skip to main content


Title: New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin
ABSTRACT Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80–100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.  more » « less
Award ID(s):
1736249
NSF-PAR ID:
10356591
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
15
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hemoglobins (Hbs) of crocodilians are reportedly characterized by unique mechanisms of allosteric regulatory control, but there are conflicting reports regarding the importance of different effectors, such as chloride ions, organic phosphates, and CO 2 . Progress in understanding the unusual properties of crocodilian Hbs has also been hindered by a dearth of structural information. Here, we present the first comparative analysis of blood properties and Hb structure and function in a phylogenetically diverse set of crocodilian species. We examine mechanisms of allosteric regulation in the Hbs of 13 crocodilian species belonging to the families Crocodylidae and Alligatoridae. We also report new amino acid sequences for the α- and β-globins of these taxa, which, in combination with structural analyses, provide insights into molecular mechanisms of allosteric regulation. All crocodilian Hbs exhibited a remarkably strong sensitivity to CO 2 , which would permit effective O 2 unloading to tissues in response to an increase in metabolism during intense activity and diving. Although the Hbs of all crocodilians exhibit similar intrinsic O 2 -affinities, there is considerable variation in sensitivity to Cl − ions and ATP, which appears to be at least partly attributable to variation in the extent of NH 2 -terminal acetylation. Whereas chloride appears to be a potent allosteric effector of all crocodile Hbs, ATP has a strong, chloride-independent effect on Hb-O 2 affinity only in caimans. Modeling suggests that allosteric ATP binding has a somewhat different structural basis in crocodilian and mammalian Hbs. 
    more » « less
  2. The acid–base relevant molecules carbon dioxide (CO2), protons (H+), and bicarbonate (HCO3−) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid–base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2, H+, and HCO3− have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid–base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2/HCO3 − accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2, pH and O2 levels that require dynamic adjustments in acid–base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid–base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment. 
    more » « less
  3. null (Ed.)
    ABSTRACT Oxygen (O2) and carbon dioxide (CO2) transport are tightly coupled in many fishes as a result of the presence of Root effect hemoglobins (Hb), whereby reduced pH reduces O2 binding even at high O2 tensions. Red blood cell carbonic anhydrase (RBC CA) activity limits the rate of intracellular acidification, yet its role in O2 delivery has been downplayed. We developed an in vitro assay to manipulate RBC CA activity while measuring Hb-O2 offloading following a physiologically relevant CO2-induced acidification. RBC CA activity in red drum (Sciaenops ocellatus) was inhibited with ethoxzolamide by 53.7±0.5%, which prompted a significant reduction in O2 offloading rate by 54.3±5.4% (P=0.0206, two-tailed paired t-test; n=7). Conversely, a 2.03-fold increase in RBC CA activity prompted a 2.14-fold increase in O2 offloading rate (P<0.001, two-tailed paired t-test; n=8). This approximately 1:1 relationship between RBC CA activity and Hb-O2 offloading rate coincided with a similar allometric scaling exponent for RBC CA activity and maximum metabolic rate. Together, our data suggest that RBC CA is rate limiting for O2 delivery in red drum. 
    more » « less
  4. Somero, George N. (Ed.)
    Dive capacities of air-breathing vertebrates are dictated by onboard O2 stores, suggesting that physiologic specialization of diving birds such as penguins may have involved adaptive changes in convective O2 transport. It has been hypothesized that increased hemoglobin (Hb)-O2 affinity improves pulmonary O2 extraction and enhances the capacity for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hb with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hb representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O2 affinity and a greatly augmented Bohr effect (i.e., reduced Hb-O2 affinity at low pH). Although an increased Hb-O2 affinity reduces the gradient for O2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O2 affinity in combination with the augmented Bohr effect maximizes both O2 extraction from the lungs and O2 unloading from the blood, allowing penguins to fully utilize their onboard O2 stores and maximize underwater foraging time. 
    more » « less
  5. ABSTRACT The gill is the primary site of ionoregulation and gas exchange in adult teleost fishes. However, those characteristics that benefit diffusive gas exchange (large, thin gills) may also enhance the passive equilibration of ions and water that threaten osmotic homeostasis. Our literature review revealed that gill surface area and thickness were similar in freshwater (FW) and seawater (SW) species; however, the diffusive oxygen (O2) conductance (Gd) of the gill was lower in FW species. While a lower Gd may reduce ion losses, it also limits O2 uptake capacity and possibly aerobic performance in situations of high O2 demand (e.g. exercise) or low O2 availability (e.g. environmental hypoxia). We also found that FW fishes had significantly higher haemoglobin (Hb)–O2 binding affinities than SW species, which will increase the O2 diffusion gradient across the gills. Therefore, we hypothesized that the higher Hb–O2 affinity of FW fishes compensates, in part, for their lower Gd. Using a combined literature review and modelling approach, our results show that a higher Hb–O2 affinity in FW fishes increases the flux of O2 across their low-Gd gills. In addition, FW and SW teleosts can achieve similar maximal rates of O2 consumption (ṀO2,max) and hypoxia tolerance (Pcrit) through different combinations of Hb–O2 affinity and Gd. Our combined data identified novel patterns in gill and Hb characteristics between FW and SW fishes and our modelling approach provides mechanistic insight into the relationship between aerobic performance and species distribution ranges, generating novel hypotheses at the intersection of cardiorespiratory and ionoregulatory fish physiology. 
    more » « less