The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
more »
« less
On the Thermodynamics of Self-Organization in Dissipative Systems: Reflections on the Unification of Physics and Biology
In this paper, we discuss some well-known experimental observations on self-organization in dissipative systems. The examples range from pure fluid flow, pattern selection in fluid–solid systems to chemical-reaction-induced flocking and aggregation in fluid systems. In each case, self-organization can be seen to be a function of a persistent internal gradient. One goal of this article is to hint at a common theory to explain such phenomena, which often takes the form of the extremum of some thermodynamic quantity, for instance the rate of entropy production. Such variational theories are not new; they have been in existence for decades and gained popularity through the Nobel Prize-winning work of theorists such as Lars Onsager and Ilya Prigogine. The arguments have evolved since then to include systems of higher complexity and for nonlinear systems, though a comprehensive theory remains elusive. The overall attempt is to bring out examples from physics, chemistry, engineering, and biology that reveal deep connections between variational principles in physics and biological, or living systems. There is sufficient evidence to at least raise suspicion that there exists an organization principle common to both living and non-living systems, which deserves deep attention.
more »
« less
- Award ID(s):
- 1802641
- PAR ID:
- 10356620
- Date Published:
- Journal Name:
- Fluids
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2311-5521
- Page Range / eLocation ID:
- 141
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The global steady state of a system in thermal equilibrium exponentially favors configurations with lesser energy. This principle is a powerful explanation of self-organization because energy is a local property of configurations. For nonequilibrium systems, there is no such property for which an analogous principle holds, hence no common explanation of the diverse forms of self-organization they exhibit. However, a flurry of recent empirical results has shown that a local property of configurations called “rattling” predicts the steady states of some nonequilibrium systems, leading to claims of a far-reaching principle of nonequilibrium self-organization. But for which nonequilibrium systems is rattling accurate, and why? We develop a theory of rattling in terms of Markov processes that gives simple and precise answers to these key questions. Our results show that rattling predicts a broader class of nonequilibrium steady states than has been claimed and for different reasons than have been suggested. Its predictions hold to an extent determined by the relative variance of, and correlation between, the local and global “parts” of a steady state. We show how these quantities characterize the local-global relationships of various random walks on random graphs, spin-glass dynamics, and models of animal collective behavior. Surprisingly, we find that the core idea of rattling is so general as to apply to equilibrium and nonequilibrium systems alike.more » « less
-
Predicting the structural properties of water and simple fluids confined in nanometer scale pores and channels is essential in, for example, energy storage and biomolecular systems. Classical continuum theories fail to accurately capture the interfacial structure of fluids. In this work, we develop a deep learning-based quasi-continuum theory (DL-QT) to predict the concentration and potential profiles of a Lennard-Jones (LJ) fluid and water confined in a nanochannel. The deep learning model is built based on a convolutional encoder–decoder network (CED) and is applied for high-dimensional surrogate modeling to relate the fluid properties to the fluid–fluid potential. The CED model is then combined with the interatomic potential-based continuum theory to determine the concentration profiles of a confined LJ fluid and confined water. We show that the DL-QT model exhibits robust predictive performance for a confined LJ fluid under various thermodynamic states and for water confined in a nanochannel of different widths. The DL-QT model seamlessly connects molecular physics at the nanoscale with continuum theory by using a deep learning model.more » « less
-
null (Ed.)Coordination within and between organisms is one of the most complex abilities of living systems, requiring the concerted regulation of many physiological constituents, and this complexity can be particularly difficult to explain by appealing to physics. A valuable framework for understanding biological coordination is the coordinative structure, a self-organized assembly of physiological elements that collectively performs a specific function. Coordinative structures are characterized by three properties: (1) multiple coupled components, (2) soft-assembly, and (3) functional organization. Coordinative structures have been hypothesized to be specific instantiations of dissipative structures, non-equilibrium, self-organized, physical systems exhibiting complex pattern formation in structure and behaviors. We pursued this hypothesis by testing for these three properties of coordinative structures in an electrically-driven dissipative structure. Our system demonstrates dynamic reorganization in response to functional perturbation, a behavior of coordinative structures called reciprocal compensation. Reciprocal compensation is corroborated by a dynamical systems model of the underlying physics. This coordinated activity of the system appears to derive from the system’s intrinsic end-directed behavior to maximize the rate of entropy production. The paper includes three primary components: (1) empirical data on emergent coordinated phenomena in a physical system, (2) computational simulations of this physical system, and (3) theoretical evaluation of the empirical and simulated results in the context of physics and the life sciences. This study reveals similarities between an electrically-driven dissipative structure that exhibits end-directed behavior and the goal-oriented behaviors of more complex living systems.more » « less
-
There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators . While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work.more » « less
An official website of the United States government

