skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Study of Application Sandbox Policies in Linux
Desktop operating systems, including macOS, Windows 10, and Linux, are adopting the application-based security model pervasive in mobile platforms. In Linux, this transition is part of the movement towards two distribution-independent application platforms: Flatpak and Snap. This paper provides the first analysis of sandbox policies defined for Flatpak and Snap applications, covering 283 applications contained in both platforms. First, we find that 90.1% of Snaps and 58.3% of Flatpak applications studied are contained by tamperproof sandboxes. Further, we find evidence that package maintainers actively attempt to define least-privilege application policies. However, defining policy is difficult and error-prone. When studying the set of matching applications that appear in both Flatpak and Snap app stores, we frequently found policy mismatches: e.g., the Flatpak version has a broad privilege (e.g., file access) that the Snap version does not, or vice versa. This work provides confidence that Flatpak and Snap improve Linux platform security while highlighting opportunities for improvement.  more » « less
Award ID(s):
1946273
PAR ID:
10356733
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Symposium on Access Control Models and Technologies (SACMAT)
Page Range / eLocation ID:
19 to 30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Web applications often handle large amounts of sensitive user data. Modern secure web frameworks protect this data by (1) using declarative languages to specify security policies alongside database schemas and (2) automatically enforcing these policies at runtime. Unfortunately, these frameworks do not handle the very common situation in which the schemas or the policies need to evolve over time—and updates to schemas and policies need to be performed in a carefully coordinated way. Mistakes during schema or policy migrations can unintentionally leak sensitive data or introduce privilege escalation bugs. In this work, we present a domain-specific language (Scooter) for expressing schema and policy migrations, and an associated SMT-based verifier (Sidecar) which ensures that migrations are secure as the application evolves. We describe the design of Scooter and Sidecar and show that our framework can be used to express realistic schemas, policies, and migrations, without giving up on runtime or verification performance. 
    more » « less
  2. Creating effective access control policies is a significant challenge to many organizations. Over-privilege increases security risk from compromised credentials, insider threats, and accidental misuse. Under-privilege prevents users from performing their duties. Policies must balance between these competing goals of minimizing under-privilege vs. over-privilege. The Attribute Based Access Control (ABAC) model has been gaining popularity in recent years because of its advantages in granularity, flexibility, and usability. ABAC allows administrators to create policies based on attributes of users, operations, resources, and the environment. However, in practice, it is often very difficult to create effective ABAC policies in terms of minimizing under-privilege and over-privilege especially for large and complex systems because their ABAC privilege spaces are typically gigantic. In this paper, we take a rule mining approach to mine systems' audit logs for automatically generating ABAC policies which minimize both under-privilege and over-privilege. We propose a rule mining algorithm for creating ABAC policies with rules, a policy scoring algorithm for evaluating ABAC policies from the least privilege perspective, and performance optimization methods for dealing with the challenges of large ABAC privilege spaces. Using a large dataset of 4.7 million Amazon Web Service (AWS) audit log events, we demonstrate that our automated approach can effectively generate least privilege ABAC policies, and can generate policies with less over-privilege and under-privilege than a Role Based Access Control (RBAC) approach. Overall, we hope our work can help promote a wider and faster deployment of the ABAC model, and can help unleash the advantages of ABAC to better protect large and complex computing systems. 
    more » « less
  3. Michael Bailey and Rachel Greenblatt (Ed.)
    Android’s filesystem access control provides a foundation for system integrity. It combines mandatory (e.g., SEAndroid) and discretionary (e.g., Unix permissions) access control, protecting both the Android platform from Android/OEM ser- vices and Android/OEM services from third-party applications. However, OEMs often introduce vulnerabilities when they add market-differentiating features and fail to correctly reconfigure this complex combination of policies. In this paper, we propose the PolyScope tool to triage Android systems for vulnerabilities using their filesystem access control policies by: (1) identifying the resources that subjects are authorized to use that may be modified by their adversaries, both with and without policy manipulations, and (2) determining the attack operations on those resources that are actually available to adversaries to reveal the specific cases that need vulnerability testing. A key insight is that adversaries may exploit discretionary elements in Android access control to expand the permissions available to themselves and/or vic- tims to launch attack operations, which we call permission expansion. We apply PolyScope to five Google and five OEM Android releases and find that permission expansion increases the privilege available to launch attacks, sometimes by more than 10x, but a significant fraction (about 15-20%) cannot be converted into attack operations due to other system configurations. Based on this analysis, we describe two previously unknown vulnerabilities and show how PolyScope helps OEMs triage the complex combination of access control policies down to attack operations worthy of testing. 
    more » « less
  4. Identifying privacy-sensitive data leaks by mobile applications has been a topic of great research interest for the past decade. Technically, such data flows are not “leaks” if they are disclosed in a privacy policy. To address this limitation in automated analysis, recent work has combined program analysis of applications with analysis of privacy policies to determine the flow-to-policy consistency, and hence violations thereof. However, this prior work has a fundamental weakness: it does not differentiate the entity (e.g., first-party vs. third-party) receiving the privacy-sensitive data. In this paper, we propose POLICHECK, which formalizes and implements an entity-sensitive flow-to-policy consistency model. We use POLICHECK to study 13,796 applications and their privacy policies and find that up to 42.4% of applications either incorrectly disclose or omit disclosing their privacy-sensitive data flows. Our results also demonstrate the significance of considering entities: without considering entity, prior approaches would falsely classify up to 38.4% of applications as having privacy-sensitive data flows consistent with their privacy policies. These false classifications include data flows to third-parties that are omitted (e.g., the policy states only the first-party collects the data type), incorrect (e.g., the policy states the third-party does not collect the data type), and ambiguous (e.g., the policy has conflicting statements about the data type collection). By defining a novel automated, entity-sensitive flow-to-policy consistency analysis, POLICHECK provides the highest-precision method to date to determine if applications properly disclose their privacy-sensitive behaviors. 
    more » « less
  5. By prioritizing simplicity and portability, least-privilege engineering has been an afterthought in OS design, resulting in monolithic kernels where any exploit leads to total compromise. μSCOPE (“microscope”) addresses this problem by automatically identifying opportunities for least-privilege separation. μSCOPE replaces expert-driven, semi-automated analysis with a general methodology for exploring a continuum of security vs. performance design points by adopting a quantitative and systematic approach to privilege analysis. We apply the μSCOPE methodology to the Linux kernel by (1) instrumenting the entire kernel to gain comprehensive, fine-grained memory access and call activity; (2) mapping these accesses to semantic information; and (3) conducting separability analysis on the kernel using both quantitative privilege and overhead metrics. We discover opportunities for orders of magnitude privilege reduction while predicting relatively low overheads—at 15% mediation overhead, overprivilege in Linux can be reduced up to 99.8%—suggesting fine-grained privilege separation is feasible and laying the groundwork for accelerating real privilege separation. 
    more » « less