skip to main content


Title: Insider-Resistant Context-Based Pairing for Multimodality Sleep Apnea Test
The increasingly sophisticated at-home screening systems for obstructive sleep apnea (OSA), integrated with both contactless and contact-based sensing modalities, bring convenience and reliability to remote chronic disease management. However, the device pairing processes between system components are vulnerable to wireless exploitation from a noncompliant user wishing to manipulate the test results. This work presents SIENNA, an insider-resistant context-based pairing protocol. SIENNA leverages JADE-ICA to uniquely identify a user’s respiration pattern within a multi-person environment and fuzzy commitment for automatic device pairing, while using friendly jamming technique to prevent an insider with knowledge of respiration patterns from acquiring the pairing key. Our analysis and test results show that SIENNA can achieve reliable (> 90% success rate) device pairing under a noisy environment and is robust against the attacker with full knowledge of the context information.  more » « less
Award ID(s):
1915738
NSF-PAR ID:
10356799
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE Global Communications Conference (GLOBECOM)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasingly sophisticated at-home screening systems for obstructive sleep apnea (OSA), integrated with both contactless and contact-based sensing modalities, bring convenience and reliability to remote chronic disease management. However, the device pairing processes between system components are vulnerable to wireless exploitation from a noncompliant user wishing to manipulate the test results. This work presents SIENNA, an insider-resistant context-based pairing protocol. SIENNA leverages JADE-ICA to uniquely identify a user’s respiration pattern within a multi-person environment and fuzzy commitment for automatic device pairing, while using friendly jamming technique to prevent an insider with knowledge of respiration patterns from acquiring the pairing key. Our analysis and test results show that SIENNA can achieve reliable (> 90% success rate) device pairing under a noisy environment and is robust against the attacker with full knowledge of the context information. 
    more » « less
  2. Community and citizen science on climate change-influenced topics offers a way for participants to actively engage in understanding the changes and documenting the impacts. As in broader climate change education, a focus on the negative impacts can often leave participants feeling a sense of powerlessness. In large scale projects where participation is primarily limited to data collection, it is often difficult for volunteers to see how the data can inform decision making that can help create a positive future. In this paper, we propose and test a method of linking community and citizen science engagement to thinking about and planning for the future through scenarios story development using the data collected by the volunteers. We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings. Using qualitative analysis of educator interviews and youth work samples, we found that using a scenario stories development mini-workshop allowed the youth to use their own data and the data from other sites to imagine the future and possible actions to sustain berry resources for their communities. This process allowed youth to exercise key cognitive skills for sustainability, including systems thinking, futures thinking, and strategic thinking. The analysis suggested that youth would benefit from further practicing the skill of envisioning oneself as an agent of change in the environment. Educators valued working with lead scientists on the project and the experience for youth to participate in the interdisciplinary program. They also identified the combination of the berry data collection, analysis and scenarios stories activities as a teaching practice that allowed the youth to situate their citizen science participation in a personal, local and cultural context. The majority of the youth groups pursued some level of stewardship action following the activity. The most common actions included collecting additional years of berry data, communicating results to a broader community, and joining other community and citizen science projects. A few groups actually pursued solutions illustrated in the scenario stories. The pairing of community and citizen science with scenario stories development provides a promising method to connect data to action for a sustainable and resilient future. 
    more » « less
  3. Cyber-physical systems (CPS) have been increasingly attacked by hackers. CPS are especially vulnerable to attackers that have full knowledge of the system's configuration. Therefore, novel anomaly detection algorithms in the presence of a knowledgeable adversary need to be developed. However, this research is still in its infancy due to limited attack data availability and test beds. By proposing a holistic attack modeling framework, we aim to show the vulnerability of existing detection algorithms and provide a basis for novel sensor-based cyber-attack detection. Stealthy Attack GEneration (SAGE) for CPS serves as a tool for cyber-risk assessment of existing systems and detection algorithms for practitioners and researchers alike. Stealthy attacks are characterized by malicious injections into the CPS through input, output, or both, which produce bounded changes in the detection residue. By using the SAGE framework, we generate stealthy attacks to achieve three objectives: (i) Maximize damage, (ii) Avoid detection, and (iii) Minimize the attack cost. Additionally, an attacker needs to adhere to the physical principles in a CPS (objective iv). The goal of SAGE is to model worst-case attacks, where we assume limited information asymmetries between attackers and defenders (e.g., insider knowledge of the attacker). Those worst-case attacks are the hardest to detect, but common in practice and allow understanding of the maximum conceivable damage. We propose an efficient solution procedure for the novel SAGE optimization problem. The SAGE framework is illustrated in three case studies. Those case studies serve as modeling guidelines for the development of novel attack detection algorithms and comprehensive cyber-physical risk assessment of CPS. The results show that SAGE attacks can cause severe damage to a CPS, while only changing the input control signals minimally. This avoids detection and keeps the cost of an attack low. This highlights the need for more advanced detection algorithms and novel research in cyber-physical security. 
    more » « less
  4. Context-based pairing solutions increase the usability of IoT device pairing by eliminating any human involvement in the pairing process. This is possible by utilizing on-board sensors (with same sensing modalities) to capture a common physical context (e.g., ambient sound via each device’s microphone). However, in a smart home scenario, it is impractical to assume that all devices will share a common sensing modality. For example, a motion detector is only equipped with an infrared sensor while Amazon Echo only has microphones. In this paper, we develop a new context-based pairing mechanism called Perceptio that uses time as the common factor across differing sensor types. By focusing on the event timing, rather than the specific event sensor data, Perceptio creates event fingerprints that can be matched across a variety of IoT devices. We propose Perceptio based on the idea that devices co-located within a physically secure boundary (e.g., single family house) can observe more events in common over time, as opposed to devices outside. Devices make use of the observed contextual information to provide entropy for Perceptio’s pairing protocol. We design and implement Perceptio, and evaluate its effectiveness as an autonomous secure pairing solution. Our implementation demonstrates the ability to sufficiently distinguish between legitimate devices (placed within the boundary) and attacker devices (placed outside) by imposing a threshold on fingerprint similarity. Perceptio demonstrates an average fingerprint similarity of 94.9% between legitimate devices while even a hypothetical impossibly well-performing attacker yields only 68.9% between itself and a valid device. 
    more » « less
  5. Abstract Aim

    Soil microorganisms are essential for the functioning of terrestrial ecosystems. Although soil microbial communities and functions are linked to tree species composition and diversity, there has been no comprehensive study of the generality or context dependence of these relationships. Here, we examine tree diversity–soil microbial biomass and respiration relationships across environmental gradients using a global network of tree diversity experiments.

    Location

    Boreal, temperate, subtropical and tropical forests.

    Time period

    2013.

    Major taxa studied

    Soil microorganisms.

    Methods

    Soil samples collected from 11 tree diversity experiments were used to measure microbial respiration, biomass and respiratory quotient using the substrate‐induced respiration method. All samples were measured using the same analytical device, method and procedure to reduce measurement bias. We used linear mixed‐effects models and principal components analysis (PCA) to examine the effects of tree diversity (taxonomic and phylogenetic), environmental conditions and interactions on soil microbial properties.

    Results

    Abiotic drivers, mainly soil water content, but also soil carbon and soil pH, significantly increased soil microbial biomass and respiration. High soil water content reduced the importance of other abiotic drivers. Tree diversity had no effect on the soil microbial properties, but interactions with phylogenetic diversity indicated that the effects of diversity were context dependent and stronger in drier soils. Similar results were found for soil carbon and soil pH.

    Main conclusions

    Our results indicate the importance of abiotic variables, especially soil water content, for maintaining high levels of soil microbial functions and modulating the effects of other environmental drivers. Planting tree species with diverse water‐use strategies and structurally complex canopies and high leaf area might be crucial for maintaining high soil microbial biomass and respiration. Given that greater phylogenetic distance alleviated unfavourable soil water conditions, reforestation efforts that account for traits improving soil water content or select more phylogenetically distant species might assist in increasing soil microbial functions.

     
    more » « less