In January 2020 East Carolina University (ECU) in partnership with Lenoir Community College (LCC), Pitt Community College (PCC), and Wayne Community College (WCC) was awarded an S-STEM Track 3 Grant (Grant number: 1930497). The purpose of this grant was to support low-income students at each partner institution, to research best practices in recruiting and retaining low-income students at both universities and community colleges, and to research how such programs influence the transfer outcomes from two-year to four-year schools. This grant provides scholarship support for two cohorts of students, one starting their engineering studies in Fall 2020 and the other starting their engineering studies in Fall 2021. Each cohort was to be comprised of 40 students including 20 students at ECU and 20 students divided among the three partnering community colleges. In addition to supporting student scholarships, this grant supported the establishment of new student support mechanisms and enhancement of existing support systems on each campus. This project involved the creation of a faculty mentoring program, designing a summer bridge program, establishing a textbook lending library, and enhancing activities for students in a living-learning community, expansion of university tutoring initiatives to allow access for community college students, and promoting a newmore »
This content will become publicly available on August 1, 2023
Summer Bridge Programming for Incoming First-Year Students at Three Public Urban Research Universities
This Complete Evidence-based Practice paper will describe how three different public urban research universities designed, executed, and iterated Summer Bridge programming for a subset of incoming first-year engineering students over the course of three consecutive years. There were commonalities between each institution’s Summer Bridge, as well as unique aspects catering to the specific needs and structures of each institution. Both these commonalities and unique aspects will be discussed, in addition to the processes of iteration and improvement, target student populations, and reported student outcomes. Finally, recommendations for other institutions seeking to launch or refine similar programming will be shared.
Summer Bridge programming at each of the three institutions shared certain communalities. Mostly notably, each of the three institutions developed its Summer Bridge as an additional way to provide support for students receiving an NSF S-STEM scholarship. The purpose of each Summer Bridge was to build community among these students, prepare them for the academic rigor of first-year engineering curriculum, and edify their STEM identity and sense of belonging. Each Summer Bridge was a 3-5 day experience held in the week immediately prior to the start of the Fall semester.
In addition to these communalities, each Summer Bridge also had its own unique more »
- Award ID(s):
- 1833817
- Publication Date:
- NSF-PAR ID:
- 10356855
- Journal Name:
- ASEE Annual Conference proceedings
- Page Range or eLocation-ID:
- https://strategy.asee.org/41415
- ISSN:
- 1524-4644
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The NSF-funded Redshirt in Engineering Consortium was formed in 2016 with the goal of enhancing the ability of academically talented but underprepared students coming from low-income backgrounds to successfully graduate with engineering degrees. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to help promising engineering students complete a bachelor’s degree. The Consortium builds on the success of three existing “academic redshirt” programs and expands the model to three new schools. The Existing Redshirt Institutions (ERIs) help mentor and train the new Student Success Partners (SSP), and SSPs contribute their unique expertise to help ERIs improve existing redshirt programs. The redshirt model is comprised of seven main programmatic components aimed at improving the engagement, retention, and graduation of students underrepresented in engineering. These components include: “intrusive” academic advising and support services, an intensive first-year academic curriculum, community-building (including pre-matriculation summer programs), career awareness and vision, faculty mentorship, NSF S-STEM scholarships, and second-year support. Successful implementation of these activities is intended to produce two main long-term outcomes: a six-year graduation rate of 60%-75% for redshirt students, and increased rates of enrollment and graduation of Pell-eligible, URM, andmore »
-
Traditional admissions processes at top institutions predominately utilize standardized test scores when comparing student applications. The equity of these high-stakes tests most severely affects students of low socioeconomic status (SES). The NSF-sponsored program, Rising Scholars: Web of Support used as an Indicator of Success in Engineering, was created to investigate whether alternative admission criteria could be used to identify low-SES applicants who would excel within STEM fields in higher education, even if they did not have the superior standardized testing metrics preferred by current admissions process. The quality of the student’s support networks and their readiness for higher education as determined by an in-person interview with the selection committee were used as input data for a Web of Support characterization model to predict a student’s likely collegiate success at the matriculation point. There were three cohorts with a total of 21 students chosen for the program during their entry to the university which included applicants of low-SES and under-represented minority status. A significant programmatic element for these students was their involvement in experiential activities through pre-existing programs in the institution. It was reasonably assumed that the Rising Scholars student population could be positively influenced toward long-term educational commitment through experientialmore »
-
This research paper examines retaining traditionally underrepresented minorities (URM) in STEM fields. The retention of URM students in STEM fields is a current area of focus for engineering education research. After an extensive literature review and examination of best practices in retaining the targeted group, a cohort-based, professional development program with a summer bridge component was developed at a large land grant institution in the Mid-Atlantic region. One programmatic goal was to increase retention of underrepresented students in the engineering college which, ultimately, is expected to increase diversity in the engineering workforce. The program has a strong focus on cohort building, teamwork, mentorship, and developing an engineering identity. Students participate in a week-long summer bridge component prior to the start of their first semester. During their first year, students take a class as a cohort each semester, participate in an industrial site visit, and interact with faculty mentors. Since 2016 the program has been funded by a National Science Foundation S-STEM grant, which provides scholarships to eligible program participants. Scholarships start at $4,500 during year one, and are renewable for up to five years, with an incremental increase of $1000 annually for years one through four. Even with the professionalmore »
-
This complete research paper discusses how students’ feelings of inclusion change throughout their undergraduate career. Student responses acquired through focus groups and one-on-one interviews were examined to determine how included the students felt in their engineering college and also the broader scientific community. A small group of non-calculus ready engineering students enrolled in a large land grant institution in the Mid-Atlantic region consented to participate in the study. The student cohort participated in an NSF S-STEM funded program aimed at fostering a sense of inclusion in engineering by implementing a curriculum focused on cohort formation, career exploration, and professional development. The AcES, consisting of a weeklong pre-fall bridge experience, two common courses, and a variety of co-curricular activities, has been operating for eight years. Students who receive S-STEM funded scholarships participate in three focus groups and two one-on-one interviews each semester throughout their undergraduate studies. Student responses from the one-on-one interviews and focus groups conducted from 2017-2020 were examined with qualitative coding methods. Questions examined in this work include: 1) Did the engineering in history course help make you feel like you belong in engineering at WVU and that you are included in engineering at WVU?, 2) Do you feelmore »