skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inclusion in citizen science: The conundrum of rebranding Does replacing the term “citizen science” do more harm than good?
As the scientific community, like society more broadly, reckons with long-standing challenges around accessibility, justice, equity, diversity, and inclusion, we would be wise to pay attention to issues and lessons emerging in debates around citizen science. When practitioners first placed the modifier “citizen” on science, they intended to signify an inclusive variant within the scientific enterprise that enables those without formal scientific credentials to engage in authoritative knowledge production (1). Given that participants are overwhelmingly white adults, above median income, with a college degree (2, 3), it is clear that citizen science is typically not truly an egalitarian variant of science, open and available to all members of society, particularly those underrepresented in the scientific enterprise. Some question whether the term “citizen” itself is a barrier to inclusion, with many organizations rebranding their programs as “community science.” But this co-opts a term that has long referred to distinct, grassroots practices of those underserved by science and is thus not synonymous with citizen science. Swapping the terms is not a benign action. Our goal is not to defend the term citizen science, nor provide a singular name for the field. Rather, we aim to explore what the field, and the multiple publics it serves, might gain or lose by replacing the term citizen science and the potential repercussions of adopting alternative terminology (including whether a simple name change alone would do much to improve inclusion).  more » « less
Award ID(s):
2005750
PAR ID:
10356881
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science
Volume:
372
Issue:
6549
ISSN:
1095-9203
Page Range / eLocation ID:
1386-1388
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Participatory science and amateur participation in scientific data collection and work has been common for hundreds of years, but has become a more formalised field of practice in recent decades. The inclusion and reliance on informally trained members of the public in scientific endeavours has especially helped connect natural history collections to the general public. In recent decades, the term used to describe these participants — citizen scientists — was intended to unite formal and informal scientists as global citizens working towards a common goal. However, the term 'citizen' today has negative connotations for many members of the public and can have a polarising effect on certain individuals. Given that the nature of participatory science is to be inclusive and inviting, it is time to change this terminology. The term 'community' science has been suggested as an alternative by some practitioners and programmes. This self-awareness within the scientific community is important, but lacks impact without input from the community members potentially participating in these programmes. We addressed this knowledge gap by posing the question of term preference to groups of volunteers who have attended participatory science activities from the Field Museum of Natural History (Chicago, Illinois, USA) and the Natural History Museum of Los Angeles County (Los Angeles, California, USA) from 2019 to 2023. A majority of respondents showed a clear preference for the term 'community' over 'citizen' science. This was especially true for younger individuals and those who belong to ethnic groups other than White. This information can impact which terms are used for specific programme populations and supports community involvement in selecting terminology and in project design. We advise stopping use of the term 'citizen' in all participatory science programmes and adopting terminology that is most appropriate depending on region, research, audience and activity. Moreover, participant populations should be solicited to hear their voices. 
    more » « less
  2. null (Ed.)
    Citizen science is an important vehicle for democratizing science and promoting the goal of universal and equitable access to scientific data and information. Data generated by citizen science groups have become an increasingly important source for scientists, applied users and those pursuing the 2030 Agenda for Sustainable Development. Citizen science data are used extensively in studies of biodiversity and pollution; crowdsourced data are being used by UN operational agencies for humanitarian activities; and citizen scientists are providing data relevant to monitoring the sustainable development goals (SDGs). This article provides an International Science Council (ISC) perspective on citizen science data generating activities in support of the 2030 Agenda and on needed improvements to the citizen science community's data stewardship practices for the benefit of science and society by presenting results of research undertaken by an ISC-sponsored Task Group. 
    more » « less
  3. Abstract Citizen science is personal. Participation is contingent on the citizens’ connection to a topic or to interpersonal relationships meaningful to them. But from the peer-reviewed literature, scientists appear to have an acquisitive data-centered relationship with citizens. This has spurred ethical and pragmatic criticisms of extractive relationships with citizen scientists. We suggest five practical steps to shift citizen-science research from extractive to relational, reorienting the research process and providing reciprocal benefits to researchers and citizen scientists. By virtue of their interests and experience within their local environments, citizen scientists have expertise that, if engaged, can improve research methods and product design decisions. To boost the value of scientific outputs to society and participants, citizen-science research teams should rethink how they engage and value volunteers. 
    more » « less
  4. Benoit Lavraud (Ed.)
    The amateur radio community is a global, highly engaged, and technical community with an intense interest in space weather, its underlying physics, and how it impacts radio communications. The large-scale observational capabilities of distributed instrumentation fielded by amateur radio operators and radio science enthusiasts offers a tremendous opportunity to advance the fields of heliophysics, radio science, and space weather. Well-established amateur radio networks like the RBN, WSPRNet, and PSKReporter already provide rich, ever-growing, long-term data of bottomside ionospheric observations. Up-and-coming purpose-built citizen science networks, and their associated novel instruments, offer opportunities for citizen scientists, professional researchers, and industry to field networks for specific science questions and operational needs. Here, we discuss the scientific and technical capabilities of the global amateur radio community, review methods of collaboration between the amateur radio and professional scientific community, and review recent peer-reviewed studies that have made use of amateur radio data and methods. Finally, we present recommendations submitted to the U.S. National Academy of Science Decadal Survey for Solar and Space Physics (Heliophysics) 2024–2033 for using amateur radio to further advance heliophysics and for fostering deeper collaborations between the professional science and amateur radio communities. Technical recommendations include increasing support for distributed instrumentation fielded by amateur radio operators and citizen scientists, developing novel transmissions of RF signals that can be used in citizen science experiments, developing new amateur radio modes that simultaneously allow for communications and ionospheric sounding, and formally incorporating the amateur radio community and its observational assets into the Space Weather R2O2R framework. Collaborative recommendations include allocating resources for amateur radio citizen science research projects and activities, developing amateur radio research and educational activities in collaboration with leading organizations within the amateur radio community, facilitating communication and collegiality between professional researchers and amateurs, ensuring that proposed projects are of a mutual benefit to both the professional research and amateur radio communities, and working towards diverse, equitable, and inclusive communities. 
    more » « less
  5. Building community with rural and underrepresented groups has been a challenge in the field of citizen science. At the University of Alaska Fairbanks, a team of scientists, educators, Extension professionals, and evaluators have joined efforts to take on this challenge across Alaska. The goals for Arctic Harvest-Public Participation in Scientific Research are to: 1) investigate how shifts in environmental conditions affect the fate of subsistence berries and timing of berry loss from plants in fall and winter across Alaska; and 2) improve the participation in and effectiveness of citizen science across diverse audiences, particularly at high latitudes where a high proportion of communities have populations underrepresented in STEM. We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings. Our interdisciplinary team developed and implemented a program that provides in-person or online support for berry monitoring and data collection, and accommodates different age levels and settings. We also developed and tested an innovative program model that weaves storytelling throughout the citizen science learning cycle, from berries stories from the larger community, to stories of the citizen science process, to stories developed from berry data being collected and applied to future scenarios in a changing climate. The variety of program modifications we created have been highly effective helping reach a variety of settings and age levels. In both informal and formal learning environments in our first two years of the program we have had 568 pre-K and elementary-aged (age 3-12), 424 secondary-aged (age 12-18) youth participants and 107 adults (ages 18+), with 44% of participants coming from groups underrepresented in STEM, and 100% of groups completing berry monitoring throughout the fall. These results highlight the importance of designing the citizen science program with cultural relevance, program delivery options, and relationships between participants and scientists, while remaining committed to making a substantial scientific contribution. 
    more » « less