{"Abstract":["This dataset includes estimated plant aboveground live biomass data\n measured in 1 m x 1 m quadrats at several sites and experiments\n under the Sevilleta LTER program. Quadrat locations span four\n distinct ecosystems and their ecotones: creosotebush dominated\n Chihuahuan Desert shrubland (est. winter 1999), black\n grama-dominated Chihuahuan Desert grassland (est. winter 1999), blue\n grama-dominated Plains grassland (est. winter 2002), and\n pinon-juniper woodland (est. winter 2003). Data on plant cover and\n height for each plant species are collected per individual plant or\n patch (for clonal plants) within 1 m x 1 m quadrats. These data\n inform population dynamics of foundational and rare plant species.\n Biomass is estimated using plant allometries from non-destructive\n measurements of plant cover and height, and can be used to calculate\n net primary production (NPP), a fundamental ecosystem variable that\n quantifies rates of carbon consumption and fixation. Estimates of\n plant species cover, total plant biomass, or NPP can inform\n understanding of biodiversity, species composition, and energy flow\n at the community scale of biological organization, as well as\n spatial and temporal responses of plants to a range of ecological\n processes and direct experimental manipulations. The cover and\n height of individual plants or patches are sampled twice yearly\n (spring and fall) in permanent 1m x 1m plots within each site or\n experiment. This dataset includes core site monitoring data (CORE,\n GRIDS, ISOWEB, TOWER), observations in response to wildfire (BURN),\n and experimental treatments of extreme drought and delayed monsoon\n rainfall (EDGE), physical disturbance to biological soil crusts on\n the soil surface (CRUST), interannual variability in precipitation\n (MEANVAR), intra-annual variability via additions of monsoon\n rainfall (MRME), additions of nitrogen as ammonium nitrate\n (FERTILIZER), additions of nitrogen x phosphorus x potassium\n (NutNet), and interacting effects of nighttime warming, nitrogen\n addition, and El Niño winter rainfall (WENNDEx). To build allometric\n equations that relate biomass to plant cover or volume, the dataset\n "SEV-LTER quadrat plant cover and height data all sites and\n experiments" is used with a separate dataset of selectively\n harvested plant species "SEV-LTER Plant species mass data for\n allometry." Together, these datasets produced \u201cSEV-LTER quadrat\n plant species biomass all sites and experiments\u201d using the scripts\n posted with the allometry dataset. Data from the CORE sites in this\n dataset were designated as NA-US-011 in the Global Index of\n Vegetation-Plot Databases (GIVD). Data from the TOWER sites in this\n dataset are linked to Ameriflux sites:\n ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and\n ameriflux.lbl.gov/sites/siteinfo/US-Ses."]}
more »
« less
Water Chemistry in Streams, Lakes Wetlands and Groundwater near the KBS LTER at the Kellogg Biological Station, Hickory Corners, MI (1996 to 2017)
Dataset Abstract Water chemistry is measured in diverse surface waters and in two water supply wells in the vicinity of the KBS LTER. This dataset includes sites sampled over time (streams, wells, some wetlands) as well as wetland sites sampled once or a few times. A separate dataset includes soil water chemistry sampled from the LTER treatments. original data source http://lter.kbs.msu.edu/datasets/50
more »
« less
- Award ID(s):
- 1832042
- PAR ID:
- 10357126
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset includes groundwater, soil moisture, weather and light data collected in six study sites in the Brownsville forested area (VA). In particular, sites H5 and H7 characterize the high forest where healthy Pinus taeda dominate, sites L1 and L6 characterize the low forest, where barren or dead Pinus taeda are present and sites M1 and M2 characterize the medium forest, representing transition between high and low forest. Data collection, started in January 2019, is done for VCR-LTER and CCZN (Coastal Critical Zone Network) long term projects. CTD-Diver are used to measure groundwater pressure, specific conductance and temperature. They hang from a cable in six wells, one for each study site. Water pressure is compensated using barometric pressure data collected by the weather station nearby. Water levels are georeferenced to NAVD 88. One soil moisture sensor for each site is placed 7-10 cm below the ground surface to detect water content, specific conductance and temperature of the first soil layer. A weather station is installed in M1 to collect solar, wind, precipitation and atmospheric pressure data. This material is based upon work supported by the National Science Foundation under Grant No. 2012322, Collaborative Research: Network Cluster: The Coastal Critical Zone: Processes that transform landscapes and fluxes between land and sea.more » « less
-
In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Cub Hill stream sites. The Cub Hill site is 14 km from the Baltimore city center (39 degrees 24'30.20N, 76 degrees 30'50.62W) and is the location of the first permanent urban carbon flux tower in an urban/suburban environment, established in 2001 by the U.S. Forest Service. Three stream monitoring sites were established in the residential area in the footprint of the tower; Jennifer Branch at North Wind Rd. (JBNW) and two headwater tributaries to Jennifer Branch: Harford Hills (JBHH) and Ontario (JBON). These sites were sampled weekly from August 2003 through June 2010.more » « less
-
{"Abstract":["This dataset includes plant species cover and height data measured\n in 1 m x 1 m quadrats at several sites and experiments under the\n Sevilleta LTER program. Quadrat locations span four distinct\n ecosystems and their ecotones: creosotebush dominated Chihuahuan\n Desert shrubland (est. winter 1999), black grama-dominated\n Chihuahuan Desert grassland (est. winter 1999), blue grama-dominated\n Plains grassland (est. winter 2002), and pinon-juniper woodland\n (est. winter 2003). Data on plant cover and height for each plant\n species are collected per individual plant or patch (for clonal\n plants) within 1 m x 1 m quadrats. These data inform population\n dynamics of foundational and rare plant species. In addition, using\n plant allometries, these non-destructive measurements of plant cover\n and height can be used to calculate net primary production (NPP), a\n fundamental ecosystem variable that quantifies rates of carbon\n consumption and fixation. Estimates of plant species cover, total\n plant biomass, or NPP can inform understanding of biodiversity,\n species composition, and energy flow at the community scale of\n biological organization, as well as spatial and temporal responses\n of plants to a range of ecological processes and direct experimental\n manipulations. The cover and height of individual plants or patches\n are sampled twice yearly (spring and fall) in permanent 1m x 1m\n plots within each site or experiment. This dataset includes core\n site monitoring data (CORE, GRIDS, ISOWEB, TOWER), observations in\n response to wildfire (BURN), and experimental treatments of extreme\n drought and delayed monsoon rainfall (EDGE), physical disturbance to\n biological soil crusts on the soil surface (CRUST), interannual\n variability in precipitation (MEANVAR), intra-annual variability via\n additions of monsoon rainfall (MRME), additions of nitrogen as\n ammonium nitrate (FERTILIZER), additions of nitrogen x phosphorus x\n potassium (NutNet), and interacting effects of nighttime warming,\n nitrogen addition, and El Niño winter rainfall (WENNDEx). To build\n allometric equations that relate biomass to plant cover or volume, a\n separate dataset of selectively harvested plant species is provided\n in "SEV-LTER Plant species mass data for allometry."\n Together, these datasets produce \u201cSEV-LTER Plant biomass all sites\n and experiments\u201d using the scripts posted with that dataset. Data\n from the CORE sites in this dataset were designated as NA-US-011 in\n the Global Index of Vegetation-Plot Databases (GIVD). Data from the\n TOWER sites in this dataset are linked to Ameriflux sites:\n ameriflux.lbl.gov/doi/AmeriFlux/US-Seg and\n ameriflux.lbl.gov/sites/siteinfo/US-Ses."]}more » « less
-
In the Baltimore urban long-term ecological research (LTER) project, (Baltimore Ecosystem Study, BES) we use the watershed approach to evaluate integrated ecosystem function. The LTER research is centered on the Gwynns Falls watershed, a 17,150 ha catchment that traverses a gradient from the urban core of Baltimore, through older urban residential (1900 - 1950) and suburban (1950- 1980) zones, rapidly suburbanizing areas and a rural/suburban fringe. Our long-term sampling network includes four longitudinal sampling sites along the Gwynns Falls as well as several small (40 - 100 ha) watersheds located within or near to the Gwynns Falls. The longitudinal sites provide data on water and nutrient fluxes in the different land use zones of the watershed (rural/suburban, rapidly suburbanizing, old suburban, urban core) and the small watersheds provide more focused data on specific land use areas (forest, agriculture, rural/suburban, urban). Each of the gaging sites is continuously monitored for discharge and is sampled weekly for chemistry. Additional chemical sampling is carried out in a supplemental set of sites to provide a greater range of land use. Weekly analyses includes nitrate, phosphate, total nitrogen, total phosphorus, chloride and sulfate, turbidity, fecal coliforms, temperature, dissolved oxygen and pH. Cations, dissolved organic carbon and nitrogen and metals are measured on selected samples. This dataset presents stream chemistry from the Watershed 263 subwatersheds. Watershed 263 is a 364 ha urban storm drain watershed (or sewershed), with 30,000 residents with mixed industrial, institutional, and residential land uses. In March 2004, we established monitoring sites in two sub-watersheds within W263 (Baltimore Street and Lanvale Street). Both are approximately 17 ha with 50% impervious surface and 4% vegetation cover.more » « less
An official website of the United States government
