Lake Tanganyika (LT) is the largest tropical freshwater lake, and the largest body of anoxic freshwater on Earth’s surface. LT’s mixed oxygenated surface waters float atop a permanently anoxic layer and host rich animal biodiversity. However, little is known about microorganisms inhabiting LT’s 1470 meter deep water column and their contributions to nutrient cycling, which affect ecosystem-level function and productivity. Here, we applied genome-resolved metagenomics and environmental analyses to link specific taxa to key biogeochemical processes across a vertical depth gradient in LT. We reconstructed 523 unique metagenome-assembled genomes (MAGs) from 34 bacterial and archaeal phyla, including many rarely observed in freshwater lakes. We identified sharp contrasts in community composition and metabolic potential with an abundance of typical freshwater taxa in oxygenated mixed upper layers, and Archaea and uncultured Candidate Phyla in deep anoxic waters. Genomic capacity for nitrogen and sulfur cycling was abundant in MAGs recovered from anoxic waters, highlighting microbial contributions to the productive surface layers via recycling of upwelled nutrients, and greenhouse gases such as nitrous oxide. Overall, our study provides a blueprint for incorporation of aquatic microbial genomics in the representation of tropical freshwater lakes, especially in the context of ongoing climate change, which is predicted tomore »
This content will become publicly available on June 28, 2023
- Editors:
- Giovannoni, Stephen J.
- Award ID(s):
- 1830011
- Publication Date:
- NSF-PAR ID:
- 10357171
- Journal Name:
- mBio
- Volume:
- 13
- Issue:
- 3
- ISSN:
- 2150-7511
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
ABSTRACT Ammonia availability due to chloramination can promote the growth of nitrifying organisms, which can deplete chloramine residuals and result in operational problems for drinking water utilities. In this study, we used a metagenomic approach to determine the identity and functional potential of microorganisms involved in nitrogen biotransformation within chloraminated drinking water reservoirs. Spatial changes in the nitrogen species included an increase in nitrate concentrations accompanied by a decrease in ammonium concentrations with increasing distance from the site of chloramination. This nitrifying activity was likely driven by canonical ammonia-oxidizing bacteria (i.e., Nitrosomonas ) and nitrite-oxidizing bacteria (i.e., Nitrospira ) as well as by complete-ammonia-oxidizing (i.e., comammox) Nitrospira -like bacteria. Functional annotation was used to evaluate genes associated with nitrogen metabolism, and the community gene catalogue contained mostly genes involved in nitrification, nitrate and nitrite reduction, and nitric oxide reduction. Furthermore, we assembled 47 high-quality metagenome-assembled genomes (MAGs) representing a highly diverse assemblage of bacteria. Of these, five MAGs showed high coverage across all samples, which included two Nitrosomonas, Nitrospira, Sphingomonas , and Rhizobiales -like MAGs. Systematic genome-level analyses of these MAGs in relation to nitrogen metabolism suggest that under ammonia-limited conditions, nitrate may be also reduced back to ammonia formore »
-
Humbert, Jean-François (Ed.)Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates ( Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp ( Exiguobacterium sp. JMULE1) to 5.7 Mbp ( Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis . Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai ( Taihu ) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterialmore »
-
ABSTRACT Bacteria of the phylum Verrucomicrobia are prevalent and are particularly common in soil and freshwater environments. Their cosmopolitan distribution and reported capacity for polysaccharide degradation suggests members of Verrucomicrobia are important contributors to carbon cycling across Earth’s ecosystems. Despite their prevalence, the Verrucomicrobia are underrepresented in isolate collections and genome databases; consequently, their ecophysiological roles may not be fully realized. Here, we expand genomic sampling of the Verrucomicrobia phylum by describing a novel genus, “ Candidatus Marcellius,” belonging to the order Opitutales . “ Ca. Marcellius” was recovered from a shale-derived produced fluid metagenome collected 313 days after hydraulic fracturing, the deepest environment from which a member of the Verrucomicrobia has been recovered to date. We uncover genomic attributes that may explain the capacity of this organism to inhabit a shale gas well, including the potential for utilization of organic polymers common in hydraulic fracturing fluids, nitrogen fixation, adaptation to high salinities, and adaptive immunity via CRISPR-Cas. To illuminate the phylogenetic and environmental distribution of these metabolic and adaptive traits across the Verrucomicrobia phylum, we performed a comparative genomic analysis of 31 publicly available, nearly complete Verrucomicrobia genomes. Our genomic findings extend the environmental distribution of the Verrucomicrobia 2.3 kilometersmore »
-
Bacterial hopanoid lipids are ubiquitous in the geologic record and serve as biomarkers for reconstructing Earth’s climatic and biogeochemical evolution. Specifically, the abundance of 2-methylhopanoids deposited during Mesozoic ocean anoxic events (OAEs) and other intervals has been interpreted to reflect proliferation of nitrogen-fixing marine cyanobacteria. However, there currently is no conclusive evidence for 2-methylhopanoid production by extant marine cyanobacteria. As an alternative explanation, here we report 2-methylhopanoid production by bacteria of the genus
Nitrobacter , cosmopolitan nitrite oxidizers that inhabit nutrient-rich freshwater, brackish, and marine environments. The model organismNitrobacter vulgaris produced only trace amounts of 2-methylhopanoids when grown in minimal medium or with added methionine, the presumed biosynthetic methyl donor. Supplementation of cultures with cobalamin (vitamin B12) increased nitrite oxidation rates and stimulated a 33-fold increase of 2-methylhopanoid abundance, indicating that the biosynthetic reaction mechanism is cobalamin dependent. BecauseNitrobacter spp. cannot synthesize cobalamin, we postulate that they acquire it from organisms inhabiting a shared ecological niche—for example, ammonia-oxidizing archaea. We propose that during nutrient-rich conditions, cobalamin-based mutualism intensifies upper water column nitrification, thus promoting 2-methylhopanoid deposition. In contrast, anoxia underlying oligotrophic surface ocean conditions in restricted basins would prompt shoaling of anaerobic ammonium oxidation, leading to low observed 2-methylhopanoid abundances. The first scenario ismore »