skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heuristics for MDD Propagation in HADDOCK
Haddock, introduced in [R. Gentzel et al., 2020], is a declarative language and architecture for the specification and the implementation of multi-valued decision diagrams. It relies on a labeled transition system to specify and compose individual constraints into a propagator with filtering capabilities that automatically deliver the expected level of filtering. Yet, the operational potency of the filtering algorithms strongly correlate with heuristics for carrying out refinements of the diagrams. This paper considers how to empower Haddock users with the ability to unobtrusively specify various such heuristics and derive the computational benefits of exerting fine-grained control over the refinement process.  more » « less
Award ID(s):
1918102
PAR ID:
10357178
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
28th International Conference on Principles and Practice of Constraint Programming (CP 2022)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Binary decision diagrams (BDDs) have been a huge success story in hardware and software verification and are increasingly applied to a wide range of combinatorial problems. While BDDs can encode boolean-valued functions of boolean-valued variables, many BDD variants have been proposed, not just to improve their efficiency, but to manage multivalued domains (a straightforward extension), multivalued ranges (using several competitive alternatives), and two-dimensional data (relations and matrices instead of sets or vectors). Orthogonally to these extensions, much effort has been spent on variable order heuristics, an essential aspect that can affect memory and time requirements by up to an exponential factor. We survey some of these exciting results and discuss some fruitful research directions for further work. Index Terms—Binary decision diagrams, canonicity, discrete function encoding, variable order heuristics, Markov chains 
    more » « less
  2. Dasgupta, Sanjoy; Mandt, Stephan; Li, Yingzhen (Ed.)
    Persistence diagrams are one of the most pop- ular types of data summaries used in Topological Data Analysis. The prevailing statistical approach to analyzing persistence diagrams is concerned with filtering out topological noise. In this paper, we adopt a different viewpoint and aim at estimating the actual distribution of a random persistence diagram, which cap- tures both topological signal and noise. To that effect, Chazal and Divol (2019) proved that, under general conditions, the expected value of a random persistence diagram is a measure admitting a Lebesgue density, called the persistence intensity function. In this paper, we are concerned with estimating the persistence intensity function and a novel, normalized version of it – called the persistence density function. We present a class of kernel- based estimators based on an i.i.d. sample of persistence diagrams and derive estimation rates in the supremum norm. As a direct corollary, we obtain uniform consistency rates for estimating linear representations of persistence diagrams, including Betti numbers and persistence surfaces. Interestingly, the persistence density function delivers stronger statistical guarantees. 
    more » « less
  3. While machine learning has been adopted across various fields, its ability to outperform traditional heuristics in operating systems is often met with justified skepticism. Concerns about unsafe decisions, opaque debugging processes, and the challenges of integrating ML into the kernel—given its stringent latency constraints and inherent complexity — make practitioners understandably cautious. This paper introduces Guardrails for the OS, a framework that allows kernel developers to declaratively specify system-level properties and define corrective actions to address property violations. The framework facilitates the compilation of these guardrails into monitors capable of running within the kernel. In this work, we establish the foundation for Guardrails, detailing its core abstractions, examining the problem space, and exploring potential solutions. 
    more » « less
  4. Decision diagrams (DDs) are widely used in system verification to compute and store the state space of finite discrete events dynamic systems (DEDSs). DDs are organized into levels, and it is well known that the size of a DD encoding a given set may be very sensitive to the order in which the variables capturing the state of the system are mapped to levels. Computing optimal orders is NP-hard. Several heuristics for variable order computation have been proposed, and metrics have been introduced to evaluate these orders. However, we know of no published evaluation that compares the actual predictive power for all these metrics. We propose and apply a methodology to carry out such an evaluation, based on the correlation between the metric value of a variable order and the size of the DD generated with that order. We compute correlations for several metrics from the literature, applied to many variable orders built using different approaches, for 40 DEDSs taken from the literature. Our experiments show that these metrics have correlations ranging from "very weak or nonexisting" to "strong." We show the importance of highly correlating metrics on variable order heuristics, by defining and evaluating two new heuristics (an improvement of the well-known Force heuristic and a metric-based simulated annealing), as well as a meta-heuristic (that uses a metric to select the "best" variable order among a set of different variable orders). 
    more » « less
  5. An influence diagram is a graphical representation of sequential decision-making under uncertainty, defining a structured decision problem by conditional probability functions and additive utility functions over discrete state and action variables. The task of finding the maximum expected utility of influence diagrams is closely related to the cost-optimal probabilistic planning, stochastic programmings, or model-based reinforcement learning. In this position paper, we address the heuristic search for solving influence diagram, where we generate admissible heuristic functions from graph decomposition schemes. Then, we demonstrate how such heuristics can guide an AND/OR branch and bound search. Finally, we briefly discuss the future directions for improving the quality of heuristic functions and search strategies. 
    more » « less