Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$.
more »
« less
Ribbon operators in the generalized Kitaev quantum double model based on Hopf algebras
Abstract Kitaev’s quantum double model is a family of exactly solvable lattice models that realize two dimensional topological phases of matter. The model was originally based on finite groups, and was later generalized to semi-simple Hopf algebras. We rigorously define and study ribbon operators in the generalized quantum double model. These ribbon operators are important tools to understand quasi-particle excitations. It turns out that there are some subtleties in defining the operators in contrast to what one would naively think of. In particular, one has to distinguish two classes of ribbons which we call locally clockwise and locally counterclockwise ribbons. Moreover, we point out that the issue already exists in the original model based on finite non-abelian groups, but it seems to not have been noticed in the literature. We show how certain common properties would fail even in the original model if we were not to distinguish these two classes of ribbons. Perhaps not surprisingly, under the new definitions ribbon operators satisfy all properties that are expected. For instance, they create quasi-particle excitations only at the end of the ribbon, and the types of the quasi-particles correspond to irreducible representations of the Drinfeld double of the input Hopf algebra. However, the proofs of these properties are much more complicated than those in the case of finite groups. This is partly due to the complications in dealing with general Hopf algebras rather than group algebras.
more »
« less
- Award ID(s):
- 2006667
- PAR ID:
- 10357262
- Date Published:
- Journal Name:
- Journal of Physics A: Mathematical and Theoretical
- Volume:
- 55
- Issue:
- 18
- ISSN:
- 1751-8113
- Page Range / eLocation ID:
- 185201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A braided Frobenius algebra is a Frobenius algebra with a Yang–Baxter operator that commutes with the operations, that are related to diagrams of compact surfaces with boundary expressed as ribbon graphs. A heap is a ternary operation exemplified by a group with the operation [Formula: see text], that is ternary self-distributive. Hopf algebras can be endowed with the algebra version of the heap operation. Using this, we construct braided Frobenius algebras from a class of certain Hopf algebras that admit integrals and cointegrals. For these Hopf algebras we show that the heap operation induces a Yang–Baxter operator on the tensor product, which satisfies the required compatibility conditions. Diagrammatic methods are employed for proving commutativity between Yang–Baxter operators and Frobenius operations.more » « less
-
The recent article by Jones et al. [arXiv:2307.12552 (2023)] gave local topological order (LTO) axioms for a quantum spin system, showed they held in Kitaev’s Toric Code and in Levin-Wen string net models, and gave a bulk boundary correspondence to describe bulk excitations in terms of the boundary net of algebras. In this article, we prove the LTO axioms for Kitaev’s Quantum Double model for a finite group G. We identify the boundary nets of algebras with fusion categorical nets associated to (Hilb(G),C[G]) or (Rep(G),CG) depending on whether the boundary cut is rough or smooth, respectively. This allows us to make connections to the work of Ogata [Ann. Henri Poincaré 25, 2353–2387 (2024)] on the type of the cone von Neumann algebras in the algebraic quantum field theory approach to topological superselection sectors. We show that the boundary algebras can also be calculated from a trivial G-symmetry protected topological phase (G-SPT), and that the gauging map preserves the boundary algebras. Finally, we compute the boundary algebras for the (3 + 1)D Quantum Double model associated to an Abelian group.more » « less
-
Discriminant ideals of noncommutative algebras , which are module finite over a central subalgebra , are key invariants that carry important information about , such as the sum of the squares of the dimensions of its irreducible modules with a given central character. There has been substantial research on the computation of discriminants, but very little is known about the computation of discriminant ideals. In this paper we carry out a detailed investigation of the lowest discriminant ideals of Cayley–Hamilton Hopf algebras in the sense of De Concini, Reshetikhin, Rosso and Procesi, whose identity fiber algebras are basic. The lowest discriminant ideals are the most complicated ones, because they capture the most degenerate behaviour of the fibers in the exact opposite spectrum of the picture from the Azumaya locus. We provide a description of the zero sets of the lowest discriminant ideals of Cayley–Hamilton Hopf algebras in terms of maximally stable modules of Hopf algebras, irreducible modules that are stable under tensoring with the maximal possible number of irreducible modules with trivial central character. In important situations, this is shown to be governed by the actions of the winding automorphism groups. The results are illustrated with applications to the group algebras of central extensions of abelian groups, big quantum Borel subalgebras at roots of unity and quantum coordinate rings at roots of unity.more » « less
-
Abstract We present observations and analysis of an eruptive M1.5 flare (SOL2014-08-01T18:13) in NOAA active region (AR) 12127, characterized by three flare ribbons, a confined filament between ribbons, and rotating sunspot motions as observed by the Solar Dynamics Observatory. The potential field extrapolation model shows a magnetic topology involving two intersecting quasi-separatrix layers (QSLs) forming a hyperbolic flux tube (HFT), which constitutes the fishbone structure for the three-ribbon flare. Two of the three ribbons show separation from each other, and the third ribbon is rather stationary at the QSL footpoints. The nonlinear force-free field extrapolation model implies the presence of a magnetic flux rope (MFR) structure between the two separating ribbons, which was unclear in the observation. This suggests that the standard reconnection scenario for eruptive flares applies to the two ribbons, and the QSL reconnection for the third ribbon. We find rotational flows around the sunspot, which may have caused the eruption by weakening the downward magnetic tension of the MFR. The confined filament is located in the region of relatively strong strapping field. The HFT topology and the accumulation of reconnected magnetic flux in the HFT may play a role in holding it from eruption. This eruption scenario differs from the one typically known for circular ribbon flares, which is mainly driven by a successful inside-out eruption of filaments. Our results demonstrate the diversity of solar magnetic eruption paths that arises from the complexity of the magnetic configuration.more » « less
An official website of the United States government

