Plants are attacked by multiple insect pest species and insect herbivory can alter plant defense mechanisms. The plant defense responses to a specific herbivore may also contribute to the herbivore growth/survival on plants. Feeding by one insect species can modulate the plant defenses, which can either facilitate or hamper the colonization of subsequent incoming insects. However, little is known about the effect of sequential herbivory on sorghum plants. In this study, we demonstrate that a specialist aphid, sugarcane aphid (SCA; Melanaphis sacchari ) grows faster on sorghum than a generalist aphid species, greenbug (GB; Schizaphis graminum ). We also determined how the pre-infestation of SCA on sorghum affected the invasion of GB and vice-versa . Our sequential herbivory experiments revealed that SCA reproduction was lower on GB-primed sorghum plants, however, the reverse was not true. To assess the differences in plant defenses induced by specialist vs. generalist aphids, we monitored the expression of salicylic acid (SA) and jasmonic acid (JA) marker genes, and flavonoid biosynthetic pathway genes after 48 h of aphid infestation. The results indicated that GB infestation induced higher expression of SA and JA-related genes, and flavonoid pathway genes ( DFR , FNR , and FNSII ) compared to SCA infestation. Overall, our results suggested that GB-infested plants activate the plant defenses via phytohormones and flavonoids at early time points and hampers the colonization of incoming SCA, as well as explain the reproductive success of SCA compared to GB.
more »
« less
Phytohormone Profile of Medicago in Response to Mycorrhizal Fungi, Aphids, and Gibberellic Acid
Although gibberellic acid (GA) is widely used in agriculture, it is unclear whether exogenous GA makes aphid-infested, mycorrhizal plants more susceptible to herbivory. This study investigates the role of GA in modulating defenses in barrel medic plants (Medicago truncatula) that are infested with pea aphids (Acyrthosiphon pisum) and colonized by the beneficial symbiont Rhizophagus intraradices. Mock- and R. intraradices-inoculated potted plants were grown in a topsoil: sand mix for 42 days and were treated with GA or solvent. Subsequently, plants were exposed to herbivory or no aphid herbivory for 36 h and 7 days. Afterwards, plant growth parameters, aphid fitness, and foliar phytohormone concentrations were measured. The results revealed that GA regulates plant defenses during arbuscular mycorrhizal (AM) fungus–plant–aphid interactions as aphids that fed for 7 days on mycorrhizal, GA-untreated plants weighed more than those that fed on mycorrhizal, GA-treated plants. No major differences were detected in phytohormone levels at 36 h. Overall, mycorrhizal plants showed more shoot biomass compared to non-mycorrhizal controls. The arbuscule density and fungal biomass of R. intraradices were not altered by exogenous GA and aphid herbivory based on molecular markers. This study indicates that exogenous GA may help reduce aphid fitness when feeding on mycorrhizal plants.
more »
« less
- Award ID(s):
- 1818211
- PAR ID:
- 10357363
- Date Published:
- Journal Name:
- Plants
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2223-7747
- Page Range / eLocation ID:
- 720
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant viruses both trigger and inhibit host plant defense responses, including defenses that target their insect vectors, such as aphids. Turnip mosaic viru (TuMV) infection and its protein, NIa-Pro (nuclear inclusion protease a), suppress aphid-induced plant defenses, however the mechanisms of this suppression are still largely unknown. In this study, we determined that NIa-Pro’s protease activity is required to increase aphid performance on host plants and that 40 transcripts with predicted NIa-Pro cleavage sequences are regulated in Arabidopsis plants challenged with aphids and/or virus compared to healthy controls. One of the candidates, MEDIATOR 16 (MED16), regulates the transcription of ethylene (ET)/jasmonic acid (JA)-dependent defense responses against necrotrophic pathogens. We show that a nuclear localization signal is removed from MED16 by specific proteolytic cleavage in virus-infected plants and in plants overexpressing NIa-Pro in the presence of aphids. Although some cleavage was occasionally detected in the absence of virus infection, it occurred at a much higher rate in plants that were virus-infected or overexpressing NIa-Pro, especially when aphids were also present. This suggests MED16 functions in the nucleus may be impacted in virus infected plants. Consistent with this, induction of the MED16-dependent transcript ofPLANT DEFENSIN 1.2 (PDF1.2), was reduced in virus-infected plants and in plants expressing NIa-Pro compared to controls, but not in plants expressing NIa-Pro C151A that lacks its protease activity. Finally, we show the performance of both the virus and the aphid vector was enhanced onmed16mutant Arabidopsis compared to controls. Overall, this study demonstrates MED16 regulates defense responses against both the virus and the aphid and provides insights into the mechanism by which TuMV suppresses anti-virus and anti-herbivore defenses.more » « less
-
ABSTRACT Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum , host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola , across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa , but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola . Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa -imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status. IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella , produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with “Swiss army knife” defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.more » « less
-
Abstract Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiontHamiltonella defensaconfers protection against the parasitoid,Aphidius ervi, andRegiella insecticolaprotects against aphid‐specific fungal pathogens, includingPandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virusA. pisum virus(APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont‐free aphids and these costs were elevated in aphids also housingH. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids withR. insecticola. To our knowledge,R. insecticolais the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of eitherR. insecticolaorH. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont‐mediated interactions.more » « less
-
Abstract BackgroundThe sugarcane aphid (SCA;Melanaphis sacchari) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance. ResultsWe used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors. ConclusionsIn summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory.more » « less
An official website of the United States government

