skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concolic Execution of NMap Scripts for Honeyfarm Generation
Attackers rely upon a vast array of tools for automating attacksagainst vulnerable servers and services. It is often the case thatwhen vulnerabilities are disclosed, scripts for detecting and exploit-ing them in tools such asNmapandMetasploitare released soonafter, leading to the immediate identification and compromise ofvulnerable systems. Honeypots, honeynets, tarpits, and other decep-tive techniques can be used to slow attackers down, however, such approaches have difficulty keeping up with the sheer number of vulnerabilities being discovered and attacking scripts that are being released. To address this issue, this paper describes an approach for applying concolic execution on attacking scripts in Nmap in order to automatically generate lightweight fake versions of the vulnerable services that can fool the scripts. By doing so in an automated and scalable manner, the approach can enable rapid deployment of custom honeyfarms that leverage the results of concolic execution to trick an attacker's script into returning a result chosen by the honeyfarm, making the script unreliable for the use by the attacker.  more » « less
Award ID(s):
1908571
PAR ID:
10357677
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 8th ACM Workshop on Moving Target Defense (MTD ’21)
Page Range / eLocation ID:
33 to 42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scripts on webpages could steal sensitive user data. Much work has been done, both in modeling and implementation, to enforce information flow control (IFC) of webpages to mitigate such attacks. It is common to model scripts running in an IFC mechanism as a reactive program. However, this model does not account for dynamic script behavior such as user action simulation, new DOM element generation, or new event handler registration, which could leak information. In this paper, we investigate how to secure sensitive user information, while maintaining the flexibility of declassification, even in the presence of active attackers-those who can perform the aforementioned actions. Our approach extends prior work on secure-multi-execution with stateful declassification by treating script-generated content specially to ensure that declassification policies cannot be manipulated by them. We use a knowledge-based progress-insensitive definition of security and prove that our enforcement mechanism is sound. We further prove that our enforcement mechanism is precise and has robust declassification (i.e. active attackers cannot learn more than their passive counterpart). 
    more » « less
  2. Peripheral hardware in modern computers is typically assumed to be secure and not malicious, and device drivers are implemented in a way that trusts inputs from hardware. However, recent vulnerabilities such as Broadpwn have demonstrated that attackers can exploit hosts through vulnerable peripherals, highlighting the importance of securing the OS-peripheral boundary. In this paper, we propose a hardware-free concolic-augmented fuzzer targeting WiFi and Ethernet drivers, and a technique for generating high-quality initial seeds, which we call golden seeds, that allow fuzzing to bypass difficult code constructs during driver initialization. Compared to prior work using symbolic execution or greybox fuzzing, Drifuzz is more successful at automatically finding inputs that allow network interfaces to be fully initialized, and improves fuzzing coverage by 214% (3.1×) in WiFi drivers and 60% (1.6×) for Ethernet drivers. During our experiments with fourteen PCI and USB network drivers, we find twelve previously unknown bugs, two of which were assigned CVEs. 
    more » « less
  3. JavaScript (JS) has evolved into a versatile and popular programming language for not only the web, but also a wide range of server-side and client-side applications. Effective, efficient, and easy-to-use testing techniques for JS scripts are in great demand. In this paper, we introduce a holistic approach to applying concolic testing to JS scripts in-situ, i.e., JS scripts are executed in their native environments as part of concolic execution and test cases generated are directly replayed in these environments. We have implemented this approach in the context of Node.js, a JS runtime built on top of Chrome’s V8 JS engine, and evaluated its effectiveness and efficiency through application to 180 Node.js libraries with heavy use of string operations. For 85% of these libraries, it achieved statement coverage ranging between 75% and 100%, a close match in coverage with the hand-crafted unit test suites accompanying their NPM releases. Our approach detected numerous exceptions in these libraries. We analyzed the exception reports for 12 representative libraries and found 6 bugs in these libraries, 4 of which are previously undetected. The bug reports and patches that we filed for these bugs have been accepted by the library developers on GitHub. 
    more » « less
  4. Federated learning (FL) has been widely deployed to enable machine learning training on sensitive data across distributed devices. However, the decentralized learning paradigm and heterogeneity of FL further extend the attack surface for backdoor attacks. Existing FL attack and defense methodologies typically focus on the whole model. None of them recognizes the existence of backdoor-critical (BC) layers-a small subset of layers that dominate the model vulnerabilities. Attacking the BC layers achieves equivalent effects as attacking the whole model but at a far smaller chance of being detected by state-of-the-art (SOTA) defenses. This paper proposes a general in-situ approach that identifies and verifies BC layers from the perspective of attackers. Based on the identified BC layers, we carefully craft a new backdoor attack methodology that adaptively seeks a fundamental balance between attacking effects and stealthiness under various defense strategies. Extensive experiments show that our BC layer-aware backdoor attacks can successfully backdoor FL under seven SOTA defenses with only 10% malicious clients and outperform the latest backdoor attack methods. 
    more » « less
  5. Testing database-backed web applications is chal- lenging because their behaviors (e.g., control flow) are highly dependent on data returned from SQL queries. Without a database containing sufficient and realistic data, it is challenging to reach potentially vulnerable code snippets, limiting various existing dynamic-based security testing approaches. However, obtaining such a database for testing is difficult in practice as it often contains sensitive information. Sharing it can lead to data leaks and privacy issues. In this paper, we present SYNTHDB, a program analysis- based database generation technique for database-backed PHP applications. SYNTHDB leverages a concolic execution engine to identify interactions between PHP codebase and the SQL queries. It then collects and solves various constraints to reconstruct a database that can enable exploring uncovered program paths without violating database integrity. Our evaluation results show that the database generated by SYNTHDB outperforms state-of- the-arts database generation techniques in terms of code and query coverage in 17 real-world PHP applications. Specifically, SYNTHDB generated databases achieve 62.9% code and 77.1% query coverages, which are 14.0% and 24.2% more in code and query coverages than the state-of-the-art techniques. Fur- thermore, our security analysis results show that SYNTHDB effectively aids existing security testing tools: Burp Suite, Wfuzz, and webFuzz. Burp Suite aided by SYNTHDB detects 76.8% of vulnerabilities while other existing techniques cover 55.7% or fewer. Impressively, with SYNTHDB, Burp Suite discovers 33 pre- viously unknown vulnerabilities from 5 real-world applications. 
    more » « less