Abstract Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.
more »
« less
Design of a Superpositively Charged Enzyme: Human Carbonic Anhydrase II Variant with Ferritin Encapsulation and Immobilization
Supercharged proteins exhibit high solubility and other desirable properties, but no engineered superpositively charged enzymes have previously been made. Superpositively charged variants of proteins such as green fluorescent protein have been efficiently encapsulated within Archaeoglobus fulgidus thermophilic ferritin (AfFtn). Encapsulation by supramolecular ferritin can yield systems with a variety of sequestered cargo. To advance applications in enzymology and green chemistry, we sought a general method for supercharging an enzyme that retains activity and is compatible with AfFtn encapsulation. The zinc metalloenzyme human carbonic anhydrase II (hCAII) is an attractive encapsulation target based on its hydrolytic activity and physiologic conversion of carbon dioxide to bicarbonate. A computationally designed variant of hCAII contains positively charged residues substituted at 19 sites on the protein’s surface, resulting in a shift of the putative net charge from −1 to +21. This designed hCAII(+21) exhibits encapsulation within AfFtn without the need for fusion partners or additional reagents. The hCAII(+21) variant retains esterase activity comparable to the wild type and spontaneously templates the assembly of AfFtn 24mers around itself. The AfFtn–hCAII(+21) host–guest complex exhibits both greater activity and thermal stability when compared to hCAII(+21). Upon immobilization on a solid support, AfFtn–hCAII(+21) retains enzymatic activity and exhibits an enhancement of activity at elevated temperatures.
more »
« less
- Award ID(s):
- 1905203
- PAR ID:
- 10357696
- Date Published:
- Journal Name:
- Biochemistry
- Volume:
- 60
- Issue:
- 47
- ISSN:
- 1520-4995
- Page Range / eLocation ID:
- 3596–3609
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wappner, Pablo (Ed.)Notch signaling is a conserved pathway that converts extracellular receptor-ligand interactions into changes in gene expression via a single transcription factor (CBF1/RBPJ in mammals; Su(H) in Drosophila ). In humans, RBPJ variants have been linked to Adams-Oliver syndrome (AOS), a rare autosomal dominant disorder characterized by scalp, cranium, and limb defects. Here, we found that a previously described Drosophila Su(H) allele encodes a missense mutation that alters an analogous residue found in an AOS-associated RBPJ variant. Importantly, genetic studies support a model that heterozygous Drosophila with the AOS-like Su(H) allele behave in an opposing manner to heterozygous flies with a Su(H) null allele, due to a dominant activity of sequestering either the Notch co-activator or the antagonistic Hairless co-repressor. Consistent with this model, AOS-like Su(H) and Rbpj variants have decreased DNA binding activity compared to wild type proteins, but these variants do not significantly alter protein binding to the Notch co-activator or the fly and mammalian co-repressors, respectively. Taken together, these data suggest a cofactor sequestration mechanism underlies AOS phenotypes associated with RBPJ variants, whereby the AOS-associated RBPJ allele encodes a protein with compromised DNA binding activity that retains cofactor binding, resulting in Notch target gene dysregulation.more » « less
-
Widespread availability of protein sequence-fitness data would revolutionize both our biochemical understanding of proteins and our ability to engineer them. Unfortunately, even though thousands of protein variants are generated and evaluated for fitness during a typical protein engineering campaign, most are never sequenced, leaving a wealth of potential sequence-fitness information untapped. Primarily, this is because sequencing is unnecessary for many protein engineering strategies; the added cost and effort of sequencing is thus unjustified. It also results from the fact that, even though many lower cost sequencing strategies have been developed, they often require at least some sequencing or computational resources, both of which can be barriers to access. Here, we present every variant sequencing (evSeq), a method and collection of tools/standardized components for sequencing a variable region within every variant gene produced during a protein engineering campaign at a cost of cents per variant. evSeq was designed to democratize low-cost sequencing for protein engineers and, indeed, anyone interested in engineering biological systems. Execution of its wet-lab component is simple, requires no sequencing experience to perform, relies only on resources and services typically available to biology labs, and slots neatly into existing protein engineering workflows. Analysis of evSeq data is likewise made simple by its accompanying software (found at github.com/fhalab/evSeq, documentation at fhalab.github.io/evSeq), which can be run on a personal laptop and was designed to be accessible to users with no computational experience. Low-cost and easy to use, evSeq makes collection of extensive protein variant sequence-fitness data practical.more » « less
-
The physical properties of in vitro iron-reconstituted and genetically engineered human heteropolymer ferritins were investigated. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), electron energy-loss spectroscopy (EELS), and 57 Fe Mössbauer spectroscopy were employed to ascertain (1) the microstructural, electronic, and micromagnetic properties of the nanosized iron cores, and (2) the effect of the H and L ferritin subunit ratios on these properties. Mössbauer spectroscopic signatures indicate that all iron within the core is in the high spin ferric state. Variable temperature Mössbauer spectroscopy for H-rich (H 21 /L 3 ) and L-rich (H 2 /L 22 ) ferritins reconstituted at 1000 57 Fe/protein indicates superparamagnetic behavior with blocking temperatures of 19 K and 28 K, while HAADF-STEM measurements give average core diameters of (3.7 ± 0.6) nm and (5.9 ± 1.0) nm, respectively. Most significantly, H-rich proteins reveal elongated, dumbbell, and crescent-shaped cores, while L-rich proteins present spherical cores, pointing to a correlation between core shape and protein shell composition. Assuming an attempt time for spin reversal of τ 0 = 10 −11 s, the Néel–Brown formula for spin-relaxation time predicts effective magnetic anisotropy energy densities of 6.83 × 10 4 J m −3 and 2.75 × 10 4 J m −3 for H-rich and L-rich proteins, respectively, due to differences in surface and shape contributions to magnetic anisotropy in the two heteropolymers. The observed differences in shape, size, and effective magnetic anisotropies of the derived biomineral cores are discussed in terms of the iron nucleation sites within the interior surface of the heteropolymer shells for H-rich and L-rich proteins. Overall, our results imply that site-directed nucleation and core growth within the protein cavity play a determinant role in the resulting core morphology. Our findings have relevance to iron biomineralization processes in nature and the growth of designer's magnetic nanoparticles within recombinant apoferritin nano-templates for nanotechnology.more » « less
-
Youssef, Noha H. (Ed.)ABSTRACT Biological nitrogen fixation, the microbial reduction of atmospheric nitrogen to bioavailable ammonia, represents both a major limitation on biological productivity and a highly desirable engineering target for synthetic biology. However, the engineering of nitrogen fixation requires an integrated understanding of how the gene regulatory dynamics of host diazotrophs respond across sequence-function space of its central catalytic metalloenzyme, nitrogenase. Here, we interrogate this relationship by analyzing the transcriptome ofAzotobacter vinelandiiengineered with a phylogenetically inferred ancestral nitrogenase protein variant. The engineered strain exhibits reduced cellular nitrogenase activity but recovers wild-type growth rates following an extended lag period. We find that expression of genes within the immediate nitrogen fixation network is resilient to the introduced nitrogenase sequence-level perturbations. Rather the sustained physiological compatibility with the ancestral nitrogenase variant is accompanied by reduced expression of genes that support trace metal and electron resource allocation to nitrogenase. Our results spotlight gene expression changes in cellular processes adjacent to nitrogen fixation as productive engineering considerations to improve compatibility between remodeled nitrogenase proteins and engineered host diazotrophs. IMPORTANCEAzotobacter vinelandiiis a key model bacterium for the study of biological nitrogen fixation, an important metabolic process catalyzed by nitrogenase enzymes. Here, we demonstrate that compatibilities between engineeredA. vinelandiistrains and nitrogenase variants can be modulated at the regulatory level. The engineered strain studied here responds by adjusting the expression of proteins involved in cellular processes adjacent to nitrogen fixation, rather than that of nitrogenase proteins themselves. These insights can inform future strategies to transfer nitrogenase variants to non-native hosts.more » « less
An official website of the United States government

