Large-scale, scientist-led, participatory science (citizen science) projects often engage participants who are primarily white, wealthy, and well-educated. Calls to diversify contributory projects are increasingly common, but little research has evaluated the efficacy of suggested strategies for diversification. We engaged participants in Crowd the Tap through facilitator organizations like historically Black colleges and universities (HBCUs), predominantly white institutions, high school science classrooms, and corporate volunteer programs. Crowd the Tap is a contributory project focused on identifying and addressing lead (Pb) contamination in household drinking water in the United States. We investigated how participant diversity with respects to race, ethnicity, and homeownership (a proxy for income) differed between participation facilitated through a partner organization and unfacilitated participation in which participants came to the project independently. We were also interested in which facilitators were most effective at increasing participant diversity. White and wealthy participants were overrepresented in unfacilitated participation. Facilitation helped increase engagement of people of color, especially Black and lower-income households. High schools were particularly effective at engaging Hispanic or Latinx participants, and HBCUs were important for engaging Black households. Ultimately, our results suggest that engagement through facilitator organizations may be an effective means of engaging diverse participants in large-scale projects. Our results have important implications for the field of participatory science as we seek to identify evidence-based strategies for diversifying project participants.
more »
« less
Mapping for Whom? Communities of Color and the Citizen Science Gap
Citizen science harnesses the power of nonscientist observations, often resulting in a vast network of data. Such projects have potential to democratize science by involving the public. Yet participants are mostly white, affluent, and well-educated, participants that contribute data from their residence or places they frequent. The geography of the United States is heavily segregated along lines of race and class. Using a Census Tract-level hurdle model, we test the relationship between the locations of the rain gauges from the citizen science project Community Collaborative Rain, Hail, and Snow Network (CoCoRaHS) with continuous variables for percent non-Hispanic white and median household income. We find whiter and more affluent Census Tracts are significantly more likely to have a rain gauge. The highly localized nature of precipitation combined with the uneven geography of storm-water infrastructure make data missing from citizen science projects like CoCoRaHS of vital importance to the project’s goals. We warn that scientific knowledge created from citizen science projects may produce scientific knowledge in service of wealthy, whiter communities at the expense of both communities of color and low-income communities.
more »
« less
- Award ID(s):
- 2005750
- PAR ID:
- 10357825
- Date Published:
- Journal Name:
- ACME
- Volume:
- 21
- Issue:
- 4
- ISSN:
- 1492-9732
- Page Range / eLocation ID:
- 372-388
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the scientific community, like society more broadly, reckons with long-standing challenges around accessibility, justice, equity, diversity, and inclusion, we would be wise to pay attention to issues and lessons emerging in debates around citizen science. When practitioners first placed the modifier “citizen” on science, they intended to signify an inclusive variant within the scientific enterprise that enables those without formal scientific credentials to engage in authoritative knowledge production (1). Given that participants are overwhelmingly white adults, above median income, with a college degree (2, 3), it is clear that citizen science is typically not truly an egalitarian variant of science, open and available to all members of society, particularly those underrepresented in the scientific enterprise. Some question whether the term “citizen” itself is a barrier to inclusion, with many organizations rebranding their programs as “community science.” But this co-opts a term that has long referred to distinct, grassroots practices of those underserved by science and is thus not synonymous with citizen science. Swapping the terms is not a benign action. Our goal is not to defend the term citizen science, nor provide a singular name for the field. Rather, we aim to explore what the field, and the multiple publics it serves, might gain or lose by replacing the term citizen science and the potential repercussions of adopting alternative terminology (including whether a simple name change alone would do much to improve inclusion).more » « less
-
This paper describes an attempt to utilize paid citizen science in a research project that documented urban park usage during the early stages of the COVID-19 pandemic in two U.S. cities. Strategies used by the research team to recruit, pay, and evaluate the experiences of the 43 citizen scientists are discussed alongside key challenges in contemporary citizen science. A literature review suggests that successful citizen science projects foster diverse and inclusive participation; develop appropriate ways to compensate citizen scientists for their work; maximize opportunities for participant learning; and ensure high standards for data quality. In this case study, the selection process proved successful in employing economically vulnerable individuals, though the citizen scientist participants were disproportionately female, young, White, non-Hispanic, single, and college educated relative to the communities studied. The participants reported that the financial compensation provided by the study, similar in amount to the economic stimulus checks distributed simultaneously by the Federal government, were reasonable given the workload, and many used it to cover basic household needs. Though the study took place in a period of high economic risk, and more than 80% of the participants had never participated in a scientific study, the experience was rated overwhelmingly positive. Participants reported that the work provided stress relief, indicated they would consider participating in similar research in the future. Despite the vast majority never having engaged in most park stewardship activities, they expressed interest in learning more about park usage, mask usage in public spaces, and socio-economic trends in relation to COVID-19. Though there were some minor challenges in data collection, data quality was sufficient to publish the topical results in a peer-reviewed companion paper. Key insights on the logistical constraints faced by the research team are highlighted throughout the paper to advance the case for paid citizen science.more » « less
-
Youth-focused community and citizen science (CCS) is increasingly used to promote science learning and to increase the accessibility of the tools of scientific research among historically marginalized and underserved communities. CCS projects are frequently categorized according to their level of public participation and their distribution of power between professional scientists and participants from collaborative and co-created projects to projects where participants have limited roles within the science process. In this study, we examined how two different CCS models, a contributory design and a co-created design, influenced science self-efficacy and science interest among youth CCS participants. We administered surveys and conducted post-program interviews with youth participation in two different CCS projects in Alaska, the Winterberry Project and Fresh Eyes on Ice, each with a contributory and a co-created model. We found that youth participating in co-created CCS projects reflected more often on their science self-efficacy than did youth in contributory projects. The CCS program model did not influence youths’ science interest, which grew after participating in both contributory and co-created projects. Our findings suggest that when youth have more power and agency to make decisions in the science process, as in co-created projects, they have greater confidence in their abilities to conduct science. Further, participating in CCS projects excites and engages youth in science learning, regardless of the CCS program design.more » « less
-
Abstract Citizen science yields increased scientific capacity in exchange for science literacy and promises of a more responsive science to society’s needs. Yet, citizen science projects are criticized for producing few scientific outputs and having exploitative relationships with the citizens who participate. In the eagerness to capture new data, scientists can fail to see the value of citizen scientists’ expertise beyond data generation and can forget to close the loop with outputs that benefit the public interest. Citizen scientists are experts in their local environments who, when asked, can improve scientific processes and products. To the degree that citizen scientists are relegated to data collection, we shortchange opportunities to advance science. Rather than merely critique, we present an evidence-based engagement approach for listening to citizen scientist participants and incorporating their input into science processes and products that can be retrofitted onto existing citizen science projects or integrated from a project’s inception. We offer this adaptable blueprint in four steps and illustrate this approach via a crowdsourced hydrology project on the Boyne River, USA. We show how engaging voices of citizen scientists at key points in the project improves both the products of science (a real-time ecohydrological model) and the process of conducting the science (adaptations to help improve data collection). Distinct from outreach or education, considering citizen scientists as an equally interesting site of inquiry can improve the practice and outputs of science.more » « less