The Milky Way is believed to host hundreds of millions of quiescent stellar-mass black holes (BHs). In the last decade, some of these objects have been potentially uncovered via gravitational microlensing events. All these detections resulted in a degeneracy between the velocity and the mass of the lens. This degeneracy has been lifted, for the first time, with the recent astrometric microlensing detection of OB110462. However, two independent studies reported very different lens masses for this event. Sahu et al. inferred a lens mass of 7.1 ± 1.3
This content will become publicly available on June 1, 2023
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1909641
- Publication Date:
- NSF-PAR ID:
- 10357840
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 260
- Issue:
- 2
- Page Range or eLocation-ID:
- 55
- ISSN:
- 0067-0049
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M ⊙, consistent with a BH, while Lam et al. inferred 1.6–4.2M ⊙, consistent with either a neutron star or a BH. Here, we study the landscape of isolated BHs formed in the field. In particular, we focus on the mass and center-of-mass speed of four subpopulations: isolated BHs from single-star origin, disrupted BHs of binary-star origin, main-sequence stars with a compact object companion, and double compact object mergers. Our model predicts that most (≳70%) isolated BHs in the Milky Way are of binary origin. However, noninteractions lead to most massive BHs (≳15–20M ⊙) being predominantly of single origin. Under the assumption that OB110462 is a free-floating compact object, we conclude that it is moremore » -
Abstract We present the analysis of five black hole candidates identified from gravitational microlensing surveys. Hubble Space Telescope astrometric data and densely sampled light curves from ground-based microlensing surveys are fit with a single-source, single-lens microlensing model in order to measure the mass and luminosity of each lens and determine if it is a black hole. One of the five targets (OGLE-2011-BLG-0462/MOA-2011-BLG-191 or OB110462 for short) shows a significant >1 mas coherent astrometric shift, little to no lens flux, and has an inferred lens mass of 1.6–4.4
M ⊙. This makes OB110462 the first definitive discovery of a compact object through astrometric microlensing and it is most likely either a neutron star or a low-mass black hole. This compact-object lens is relatively nearby (0.70–1.92 kpc) and has a slow transverse motion of <30 km s−1. OB110462 shows significant tension between models well fit to photometry versus astrometry, making it currently difficult to distinguish between a neutron star and a black hole. Additional observations and modeling with more complex system geometries, such as binary sources, are needed to resolve the puzzling nature of this object. For the remaining four candidates, the lens masses are <2M ⊙, and they are unlikely to be black holes;more » -
Abstract We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a 1.71 ± 0.27 M Jup planet orbiting a 0.69 ± 0.04 M ⊙ K-dwarf host star at a distance of 6.89 ± 0.77 kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet–host star projected separation is only weakly constrained due to the close-wide light-curve degeneracy; the 2 σ projected separation ranges are 0.6–1.0 au and 4.7–7.7 au for close and wide solutions, respectively. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis. Our Keck follow-up program has now measured lens-source separations for six planetary microlensing events, and five of these six events have host star masses above the median prediction under the assumption that assumes that all stars have an equal chance of hosting planets detectable by microlensing. This suggests that more massive stars may be more likely to host planets of a fixed mass ratio that orbit near or beyond the snow line. These results also indicate the importance of hostmore »
-
Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5 M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150 M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and alignedmore »
-
Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I = 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M ⊙ and 0.36 ± 0.03 M ⊙ at 780 pc, with an orbital period of 2.88 years and an eccentricitymore »