skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aligned 2D carbon nanotube liquid crystals for wafer-scale electronics
Semiconducting carbon nanotubes promise faster performance and lower power consumption than Si in field-effect transistors (FETs) if they can be aligned in dense arrays. Here, we demonstrate that nanotubes collected at a liquid/liquid interface self-organize to form two-dimensional (2D) nematic liquid crystals that globally align with flow. The 2D liquid crystals are transferred onto substrates in a continuous process generating dense arrays of nanotubes aligned within ±6°, ideal for electronics. Nanotube ordering improves with increasing concentration and decreasing temperature due to the underlying liquid crystal phenomena. The excellent alignment and uniformity of the transferred assemblies enable FETs with exceptional on-state current density averaging 520 μA μm −1 at only −0.6 V, and variation of only 19%. FETs with ion gel top gates demonstrate subthreshold swing as low as 60 mV decade −1 . Deposition across a 10-cm substrate is achieved, evidencing the promise of 2D nanotube liquid crystals for commercial semiconductor electronics.  more » « less
Award ID(s):
1727523
PAR ID:
10358095
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
7
Issue:
37
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tangential flow interfacial self-assembly (TaFISA) is a promising scalable technique enabling uniformly aligned carbon nanotubes for high-performance semiconductor electronics. In this process, flow is utilized to induce global alignment in two-dimensional nematic carbon nanotube assemblies trapped at a liquid/liquid interface, and these assemblies are subsequently deposited on target substrates. Here, we present an observational study of experimental parameters that affect the interfacial assembly and subsequent aligned nanotube deposition. We specifically study the water contact angle (WCA) of the substrate, nanotube ink composition, and water subphase and examine their effects on liquid crystal defects, overall and local alignment, and nanotube bunching or crowding. By varying the substrate chemical functionalization, we determine that highly aligned, densely packed, individualized nanotubes deposit only at relatively small WCA between 35 and 65°. At WCA (< 10°), high nanotube bunching or crowding occurs, and the film is nonuniform, while aligned deposition ceases to occur at higher WCA (>65°). We find that the best alignment, with minimal liquid crystal defects, occurs when the polymer-wrapped nanotubes are dispersed in chloroform at a low (0.6:1) wrapper polymer to nanotube ratio. We also demonstrate that modifying the water subphase through the addition of glycerol not only improves overall alignment and reduces liquid crystal defects but also increases local nanotube bunching. These observations provide important guidance for the implementation of TaFISA and its use toward creating technologies based on aligned semiconducting carbon nanotubes. 
    more » « less
  2. Abstract The assembly of a two-dimensional (2D) nematic liquid crystal at an interface between two liquids can be exploited to assemble densely packed and highly aligned arrays of rod-like nanoparticles. This method is especially relevant to creating arrays of semiconducting carbon nanotubes (CNTs) for high-performance electronics. When a dense solvent containing CNTs flows over a less dense water subphase in a confined channel, the locally aligned arrays of nanoparticles align globally with the flow direction and can be transferred to the substrate. For large substrates and long channels, the dense solvent tends to slow and create a pool, which then drops through the interface and disturbs the delicate deposition process. Understanding this phenomenon is critical to improving and scaling up similar manufacturing processes. Here, data are collected, and an empirical model is developed to understand and predict the pooling behavior of a suspended fluid flowing over a less dense subphase. The model is demonstrated with two different solvents and proves to be accurate within +/− 15%. With a better understanding of the physics governing the system, the model is then used to suggest methods for minimizing pooling behavior. 
    more » « less
  3. Abstract To exploit their charge transport properties in transistors, semiconducting carbon nanotubes must be assembled into aligned arrays comprised of individualized nanotubes at optimal packing densities. However, achieving this control on the wafer‐scale is challenging. Here, solution‐based shear in substrate‐wide, confined channels is investigated to deposit continuous films of well‐aligned, individualized, semiconducting nanotubes. Polymer‐wrapped nanotubes in organic ink are forced through sub‐mm tall channels, generating shear up to 10 000 s−1uniformly aligning nanotubes across substrates. The ink volume and concentration, channel height, and shear rate dependencies are elucidated. Optimized conditions enable alignment within a ±32° window, at 50 nanotubes µm−1, on 10 × 10 cm2substrates. Transistors (channel length of 1–5 µm) are fabricated parallel and perpendicular to the alignment. The parallel transistors perform with 7× faster charge carrier mobility (101 and 49 cm2V−1s−1assuming array and parallel‐plate capacitances, respectively) with high on/off ratio of 105. The spatial uniformity varies ±10% in density, ±2° in alignment, and ±7% in mobility. Deposition occurs within seconds per wafer, and further substrate scaling is viable. Compared to random networks, aligned nanotube films promise to be a superior platform for applications including sensors, flexible/stretchable electronics, and light emitting and harvesting devices. 
    more » « less
  4. Precise fabrication of semiconducting carbon nanotubes (CNTs) into densely aligned evenly spaced arrays is required for ultrascaled technology nodes. We report the precise scaling of inter-CNT pitch using a supramolecular assembly method called spatially hindered integration of nanotube electronics. Specifically, by using DNA brick crystal-based nanotrenches to align DNA-wrapped CNTs through DNA hybridization, we constructed parallel CNT arrays with a uniform pitch as small as 10.4 nanometers, at an angular deviation <2° and an assembly yield >95%. 
    more » « less
  5. null (Ed.)
    Selective deposition of semiconducting carbon nanotubes (s-CNTs) into densely packed, aligned arrays of individualized s-CNTs is necessary to realize their potential in semiconductor electronics. We report the combination of chemical contrast patterns, topography, and pre-alignment of s-CNTs via shear to achieve selective-area deposition of aligned arrays of s-CNTs. Alternate stripes of surfaces favorable and unfavorable to s-CNT adsorption were patterned with widths varying from 2000 nm down to 100 nm. Addition of topography to the chemical contrast patterns combined with shear enabled the selective-area deposition of arrays of quasi-aligned s-CNTs (∼14°) even in patterns that are wider than the length of individual nanotubes (>500 nm). When the width of the chemical and topographical contrast patterns is less than the length of individual nanotubes (<500 nm), confinement effects become dominant enabling the selective-area deposition of much more tightly aligned s-CNTs (∼7°). At a trench width of 100 nm, we demonstrate the lowest standard deviation in alignment degree of 7.6 ± 0.3° at a deposition shear rate of 4600 s −1 , while maintaining an individualized s-CNT density greater than 30 CNTs μm −1 . Chemical contrast alone enables selective-area deposition, but chemical contrast in addition to topography enables more effective selective-area deposition and stronger confinement effects, with the advantage of removal of nanotubes deposited in spurious areas via selective lift-off of the topographical features. These findings provide a methodology that is inherently scalable, and a means to deposit spatially selective, aligned s-CNT arrays for next-generation semiconducting devices. 
    more » « less