skip to main content


Title: Closed Loops and RREF as Conceptual Resources for Reasoning about Null Spaces
Vector spaces are often taught with an axiomatic focus, but this has been shown to rely on knowledge many students have not yet developed. In this paper, we examine two students’ conceptual resources for reasoning about null spaces drawing on data from a paired teaching experiment. The task sequence is set in the context of a school with one directional hallways. Students’ informal reasoning about paths that leave the room populations unchanged supported more formal reasoning about null spaces. We found that one student used context-based resources (such as ‘loops’ in hallway) to reason about null spaces, while the other student drew largely on previously formalized mathematical resources (e.g. free variables, linear dependence). The use of formal resources sometimes required recontextualization, which may function to constrain student sense-making or afford opportunities for broadening students’ formal prior knowledge.  more » « less
Award ID(s):
1915156
NSF-PAR ID:
10358129
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Karunakaran, S. S.; Higgins, A.
Date Published:
Journal Name:
Proceedings of the Annual Conference on Research in Undergraduate Mathematics Education
ISSN:
2474-9346
Page Range / eLocation ID:
28-35
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. S. S. Karunakaran ; A. Higgins (Ed.)
    Vector spaces are often taught with an axiomatic focus, but this has been shown to rely on knowledge many students have not yet developed. In this paper, we examine two students’ conceptual resources for reasoning about null spaces drawing on data from a paired teaching experiment. The task sequence is set in the context of a school with one directional hallways. Students’ informal reasoning about paths that leave the room populations unchanged supported more formal reasoning about null spaces. We found that one student used context-based resources (such as ‘loops’ in hallway) to reason about null spaces, while the other student drew largely on previously formalized mathematical resources (e.g. free variables, linear dependence). The use of formal resources sometimes required recontextualization, which may function to constrain student sense-making or afford opportunities for broadening students’ formal prior knowledge. 
    more » « less
  2. Karunakaran, S. ; Higgins, A. (Ed.)
    Vector spaces are often taught with an axiomatic focus, but this has been shown to rely on knowledge many students have not yet developed. In this paper, we examine two students’ conceptual resources for reasoning about null spaces drawing on data from a paired teaching experiment. The task sequence is set in the context of a school with one directional hallways. Students’ informal reasoning about paths that leave the room populations unchanged supported more formal reasoning about null spaces. We found that one student used context-based resources (such as ‘loops’ in hallway) to reason about null spaces, while the other student drew largely on previously formalized mathematical resources (e.g. free variables, linear dependence). The use of formal resources sometimes required recontextualization, which may function to constrain student sense-making or afford opportunities for broadening students’ formal prior knowledge. 
    more » « less
  3. This experience report describes an approach for helping elementary schools integrate computational thinking and coding by leveraging existing resources and infrastructure that do not rely on 1-1 computing. A particular focus is using the school library and media center as a site to complement and enhance classroom instruction on coding. Further, our approach builds upon "unplugged" knowledge and practices that are already familiar to and motivating for students, in this case tabletop board games. Through these games, students can use their prior knowledge and ease with tabletop gaming mechanics to cue relevant ideas for core computational concepts. We describe a model and an instructional unit spanning across classroom and school library settings that builds upon board game play as a source domain for computing knowledge. Building on expansive framing, the model emphasizes instructional linkages being made between one domain (the tabletop board game) and another (specially designed Scratch project shells with partially complete code blocks) such that the reasoning activities and different contexts are seen as instantiations of the same encompassing context. We present the experiences of three elementary school teachers as they implemented the unit in their classrooms and with their school librarian. We also show initial findings on the impact of the unit on student interest (N=87), as measured by pre- and post- surveys. We conclude with lessons learned about ways to improve the unit and future classroom implementations. 
    more » « less
  4. null (Ed.)
    Teachers’ sense of “what is taking place with respect to knowledge” drives their perspective on “what works” and “what is likely to work” in their classroom context. Scholarship by Hammer, Russ and many others indicates that this “sense” is very often context-sensitive and may be productively modeled as a local coalescence of small-grained epistemological resources. Presented here is an investigation of the epistemological resources contributing to high school chemistry teachers’ framing of “what works” in their learning environment. Teacher reflections are unpacked and characterized for classroom information noticed and responded to when considering “what worked” during the 2019-2020 school year. Preliminary findings suggest epistemological resources guiding “what worked” often align with a view of knowledge as propagated stuff. Thus, implying that teachers’ reasoning about “what works” is guided by how well knowledge is transferred to students. Also present was evidence that epistemological resources aligned to views of knowledge as fabricated stuff were activated. The perspective that knowledge is inferred or developed from other knowledge, rather than passed from an authority figure, aligns well with reform efforts that emphasize student sensemaking. This study is part of a larger program in which a teacher-researcher collaborative adapts and refines evidence-based curricular materials for an undergraduate chemistry course for use in high school. These materials are structured around scaffolded progressions of big ideas (e.g., energy, electrostatic and bonding interactions) that build in complexity as students make sense of increasingly complex phenomena. Ongoing improvement of transformed materials is dependent upon the ability to initiate and stabilize a sense of “what works” consistent with sensemaking aims. 
    more » « less
  5. As the field of engineering faces looming societal issues, it becomes particularly important to foster more “holistic engineers” with systems-thinking skills and an understanding of the macro-ethical impacts of their work (Canny and Bielefeldt, 2015) Macro-ethics here refers to the collective social responsibility of engineers as a profession, as opposed to micro-ethics, which concern activities within the profession (Herkert, 2005). However, college students studying engineering in the United States exhibit a decline in concern for public welfare over the course of their education (Cech, 2014) as well as a tendency to orient to micro-ethical issues over macro-ethical issues (Schiff et al, 2020). Scholars attribute these trends to ideologies pervasive in engineering spaces, such as depoliticization of engineering practice, technocracy, and meritocracy (Cech, 2014; Slaton, 2015). While Cech (2014) argues these status quo ideologies in engineering are maintained by a “culture of disengagement” that decreases interest in public welfare, Radoff et al. (2022) find indications that additional factors contribute to engaged students’ reproduction of such ideologies. They find, for example, instances of students in reproducing dehumanizing narratives regarding low-income communities, despite their enrollment in a voluntary program premised on cultivating socially responsible STEM professionals. This finding suggests that even students who remain “engaged” to some degree can reproduce status quo ideologies which Cech (2014) attributes to disengagement. One explanation as to why a macro-ethically “engaged” student may fail to attend to the social aspects of design follows a deficit narrative: a lack of knowledge or ability. We see this assumption in comparisons of students’ and experts’ design processes, where the areas in which students behave differently than experts are interpreted as areas that require additional instruction on how to behave more like the experts (Atman et al., 2008). This presupposition of students’ lacking knowledge or skills, however, backgrounds contextual or interactional factors. Philip et al. (2018) challenges such assumptions in their analysis of a classroom discussion on the ethics of drone warfare, which exemplifies students’ convergence to American nationalism, but with the framing that this convergence is interactionally created, rather than the result of individual students’ stable, dogmatic beliefs. However, because their analysis is limited to the scope of a single class discussion, the extent to which students’ performance is situated in said class remains unclear. In this paper, we attempt to understand the ways in which students reproduce ideologies dominant in engineering, as well as the situated nature of students’ ideological orientations in collaborative work. We consider a case study focus group from Radoff et al. (2022) where students reasoned through a hypothetical design scenario about a grocery store. We show how, despite many opportunities where problematic status-quo narratives are momentarily challenged, the students generally reject the challenges, not by arguing against them, but by positioning them outside the scope of their work. Further, we show how these moments of rejection are tightly coupled with attempts to emulate the multinational technology company Amazon. Finally, we use additional data to illustrate the situatedness of one student’s performance, and theorize the influence of Amazon as a “strange attractor” in this student’s situated reasoning. 
    more » « less