skip to main content


Title: The genetics and physiology of seed dormancy, a crucial trait in common bean domestication
Abstract Background Physical seed dormancy is an important trait in legume domestication. Although seed dormancy is beneficial in wild ecosystems, it is generally considered to be an undesirable trait in crops due to reduction in yield and / or quality. The physiological mechanism and underlying genetic factor(s) of seed dormancy is largely unknown in several legume species. Here we employed an integrative approach to understand the mechanisms controlling physical seed dormancy in common bean ( Phaseolus vulgaris L.). Results Using an innovative CT scan imaging system, we were able to track water movements inside the seed coat. We found that water uptake initiates from the bean seed lens. Using a scanning electron microscopy (SEM) we further identified several micro-cracks on the lens surface of non-dormant bean genotypes. Bulked segregant analysis (BSA) was conducted on a bi-parental RIL (recombinant inbred line) population, segregating for seed dormancy. This analysis revealed that the seed water uptake is associated with a single major QTL on Pv03. The QTL region was fine-mapped to a 118 Kb interval possessing 11 genes. Coding sequence analysis of candidate genes revealed a 5-bp insertion in an ortholog of pectin acetylesterase 8 that causes a frame shift, loss-of-function mutation in non-dormant genotype. Gene expression analysis of the candidate genes in the seed coat of contrasting genotypes indicated 21-fold lower expression of pectin acetylesterase 8 in non-dormant genotype. An analysis of mutational polymorphism was conducted among wild and domesticated beans. Although all the wild beans possessed the functional allele of pectin acetylesterase 8 , the majority (77%) of domesticated beans had the non-functional allele suggesting that this variant was under strong selection pressure through domestication. Conclusions In this study, we identified the physiological mechanism of physical seed dormancy and have identified a candidate allele causing variation in this trait. Our findings suggest that a 5-bp insertion in an ortholog of pectin acetylesterase 8 is likely a major causative mutation underlying the loss of seed dormancy during domestication. Although the results of current study provide strong evidences for the role of pectin acetylesterase 8 in seed dormancy, further confirmations seem necessary by employing transgenic approaches.  more » « less
Award ID(s):
2018432
NSF-PAR ID:
10358278
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
BMC Plant Biology
Volume:
21
Issue:
1
ISSN:
1471-2229
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION During the independent process of cereal evolution, many trait shifts appear to have been under convergent selection to meet the specific needs of humans. Identification of convergently selected genes across cereals could help to clarify the evolution of crop species and to accelerate breeding programs. In the past several decades, researchers have debated whether convergent phenotypic selection in distinct lineages is driven by conserved molecular changes or by diverse molecular pathways. Two of the most economically important crops, maize and rice, display some conserved phenotypic shifts—including loss of seed dispersal, decreased seed dormancy, and increased grain number during evolution—even though they experienced independent selection. Hence, maize and rice can serve as an excellent system for understanding the extent of convergent selection among cereals. RATIONALE Despite the identification of a few convergently selected genes, our understanding of the extent of molecular convergence on a genome-wide scale between maize and rice is very limited. To learn how often selection acts on orthologous genes, we investigated the functions and molecular evolution of the grain yield quantitative trait locus KRN2 in maize and its rice ortholog OsKRN2 . We also identified convergently selected genes on a genome-wide scale in maize and rice, using two large datasets. RESULTS We identified a selected gene, KRN2 ( kernel row number2 ), that differs between domesticated maize and its wild ancestor, teosinte. This gene underlies a major quantitative trait locus for kernel row number in maize. Selection in the noncoding upstream regions resulted in a reduction of KRN2 expression and an increased grain number through an increase in kernel rows. The rice ortholog, OsKRN2 , also underwent selection and negatively regulates grain number via control of secondary panicle branches. These orthologs encode WD40 proteins and function synergistically with a gene of unknown function, DUF1644, which suggests that a conserved protein interaction controls grain number in maize and rice. Field tests show that knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by ~10% and ~8%, respectively, with no apparent trade-off in other agronomic traits. This suggests potential applications of KRN2 and its orthologs for crop improvement. On a genome-wide scale, we identified a set of 490 orthologous genes that underwent convergent selection during maize and rice evolution, including KRN2/OsKRN2 . We found that the convergently selected orthologous genes appear to be significantly enriched in two specific pathways in both maize and rice: starch and sucrose metabolism, and biosynthesis of cofactors. A deep analysis of convergently selected genes in the starch metabolic pathway indicates that the degree of genetic convergence via convergent selection is related to the conservation and complexity of the gene network for a given selection. CONCLUSION Our findings show that common phenotypic shifts during maize and rice evolution acting on conserved genes are driven at least in part by convergent selection, which in maize and rice likely occurred both during and after domestication. We provide evolutionary and functional evidence on the convergent selection of KRN2/OsKRN2 for grain number between maize and rice. We further found that a complete loss-of-function allele of KRN2/OsKRN2 increased grain yield without an apparent negative impact on other agronomic traits. Exploring the role of KRN2/OsKRN2 and other convergently selected genes across the cereals could provide new opportunities to enhance the production of other global crops. Shared selected orthologous genes in maize and rice for convergent phenotypic shifts during domestication and improvement. By comparing 3163 selected genes in maize and 18,755 selected genes in rice, we identified 490 orthologous gene pairs, including KRN2 and its rice ortholog OsKRN2 , as having been convergently selected. Knockout of KRN2 in maize or OsKRN2 in rice increased grain yield by increasing kernel rows and secondary panicle branches, respectively. 
    more » « less
  2. Barley is an important cereal crop worldwide because of its use in the brewing and distilling industry. However, adequate supplies of quality malting barley are threatened by global climate change due to drought in some regions and excess precipitation in others, which facilitates epidemics caused by fungal pathogens. The disease net form net blotch caused by the necrotrophic fungal pathogen Pyrenophora teres f. teres ( Ptt ) has emerged as a global threat to barley production and diverse populations of Ptt have shown a capacity to overcome deployed genetic resistances. The barley line CI5791 exhibits remarkably effective resistance to diverse Ptt isolates from around the world that maps to two major QTL on chromosomes 3H and 6H. To identify genes involved in this effective resistance, CI5791 seed were γ-irradiated and two mutants, designated CI5791-γ3 and CI5791-γ8, with compromised Ptt resistance were identified from an M 2 population. Phenotyping of CI5791-γ3 and -γ8 × Heartland F 2 populations showed three resistant to one susceptible segregation ratios and CI5791-γ3 × -γ8 F 1 individuals were susceptible, thus these independent mutants are in a single allelic gene. Thirty-four homozygous mutant (susceptible) CI5791-γ3 × Heartland F 2 individuals, representing 68 recombinant gametes, were genotyped via PCR genotype by sequencing. The data were used for single marker regression mapping placing the mutation on chromosome 3H within an approximate 75 cM interval encompassing the 3H CI5791 resistance QTL. Sequencing of the mutants and wild-type (WT) CI5791 genomic DNA following exome capture identified independent mutations of the HvWRKY6 transcription factor located on chromosome 3H at ∼50.7 cM, within the genetically delimited region. Post transcriptional gene silencing of HvWRKY6 in barley line CI5791 resulted in Ptt susceptibility, confirming that it functions in NFNB resistance, validating it as the gene underlying the mutant phenotypes. Allele analysis and transcript regulation of HvWRKY6 from resistant and susceptible lines revealed sequence identity and upregulation upon pathogen challenge in all genotypes analyzed, suggesting a conserved transcription factor is involved in the defense against the necrotrophic pathogen. We hypothesize that HvWRKY6 functions as a conserved signaling component of defense mechanisms that restricts Ptt growth in barley. 
    more » « less
  3. Abstract

    Wild and weedy relatives of domesticated crops harbor genetic variants that can advance agricultural biotechnology. Here we provide a genome resource for the wild plant green millet (Setaria viridis), a model species for studies of C4grasses, and use the resource to probe domestication genes in the close crop relative foxtail millet (Setaria italica). We produced a platinum-quality genome assembly ofS. viridisand de novo assemblies for 598 wild accessions and exploited these assemblies to identify loci underlying three traits: response to climate, a ‘loss of shattering’ trait that permits mechanical harvest and leaf angle, a predictor of yield in many grass crops. With CRISPR–Cas9 genome editing, we validatedLess Shattering1(SvLes1) as a gene whose product controls seed shattering. InS. italica, this gene was rendered nonfunctional by a retrotransposon insertion in the domesticated loss-of-shattering alleleSiLes1-TE(transposable element). This resource will enhance the utility ofS. viridisfor dissection of complex traits and biotechnological improvement of panicoid crops.

     
    more » « less
  4. Abstract

    Dry beans (Phaseolus vulgarisL.) are a nutritious food, but their lengthy cooking requirements are barriers to consumption. Presoaking is one strategy to reduce cooking time. Soaking allows hydration to occur prior to cooking, and enzymatic changes to pectic polysaccharides also occur during soaking that shorten the cooking time of beans. Little is known about how gene expression during soaking influences cooking times. The objectives of this study were to (1) identify gene expression patterns that are altered by soaking and (2) compare gene expression in fast‐cooking and slow‐cooking bean genotypes. RNA was extracted from four bean genotypes at five soaking time points (0, 3, 6, 12, and 18 h) and expression abundances were detected using Quant‐seq. Differential gene expression analysis and weighted gene coexpression network analysis were used to identify candidate genes within quantitative trait loci for water uptake and cooking time. Genes related to cell wall growth and development as well as hypoxic stress were differentially expressed between the fast‐ and slow‐cooking beans due to soaking. Candidate genes identified in the slow‐cooking beans included enzymes that increase intracellular calcium concentrations and cell wall modification enzymes. The expression of cell wall‐strengthening enzymes in the slow‐cooking beans may increase their cooking time and ability to resist osmotic stress by preventing cell separation and water uptake in the cotyledon.

     
    more » « less
  5. Abstract Background and Aims

    Environments experienced by both parents and offspring influence progeny traits, but the epigenetic mechanisms that regulate the balance of parental vs. progeny control of progeny phenotypes are not known. We tested whether DNA methylation in parents and/or progeny mediates responses to environmental cues experienced in both generations.

    Methods

    Using Arabidopsis thaliana, we manipulated parental and progeny DNA methylation both chemically, via 5-azacytidine, and genetically, via mutants of methyltransferase genes, then measured progeny germination responses to simulated canopy shade in parental and progeny generations.

    Key Results

    We first found that germination of offspring responded to parental but not seed demethylation. We further found that parental demethylation reversed the parental effect of canopy in seeds with low (Cvi-1) to intermediate (Col) dormancy, but it obliterated the parental effect in seeds with high dormancy (Cvi-0). Demethylation did so by either suppressing germination of seeds matured under white-light (Cvi-1) or under canopy (Cvi-0), or by increasing the germination of seeds matured under canopy (Col). Disruption of parental methylation also prevented seeds from responding to their own light environment in one genotype (Cvi-0, most dormant), but it enabled seeds to respond to their own environment in another genotype (Cvi-1, least dormant). Using mutant genotypes, we found that both CG and non-CG DNA methylation were involved in parental effects on seed germination.

    Conclusions

    Parental methylation state influences seed germination more strongly than does the progeny’s own methylation state, and it influences how seeds respond to environments of parents and progeny in a genotype-specific manner.

     
    more » « less