skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detection of 1 H -Triphosphirene ( c -HP 3 ) and 2-Triphosphenylidene (HP 3 ): The Isovalent Counterparts of 1 H -Triazirine ( c -HN 3 ) and Hydrazoic Acid (HN 3 )
Award ID(s):
1800975 2103269
PAR ID:
10358400
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
13
Issue:
12
ISSN:
1948-7185
Page Range / eLocation ID:
2725 to 2730
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reduction potentials (reported vs. Fc + /Fc) for a series of Cp′ 3 Ln complexes (Cp′ = C 5 H 4 SiMe 3 , Ln = lanthanide) were determined via electrochemistry in THF with [ n Bu 4 N][BPh 4 ] as the supporting electrolyte. The Ln( iii )/Ln( ii ) reduction potentials for Ln = Eu, Yb, Sm, and Tm (−1.07 to −2.83 V) follow the expected trend for stability of 4f 7 , 4f 14 , 4f 6 , and 4f 13 Ln( ii ) ions, respectively. The reduction potentials for Ln = Pr, Nd, Gd, Tb, Dy, Ho, Er, and Lu, that form 4f n 5d 1 Ln( ii ) ions ( n = 2–14), fall in a narrow range of −2.95 V to −3.14 V. Only cathodic events were observed for La and Ce at −3.36 V and −3.43 V, respectively. The reduction potentials of the Ln( ii ) compounds [K(2.2.2-cryptand)][Cp′ 3 Ln] (Ln = Pr, Sm, Eu) match those of the Cp′ 3 Ln complexes. The reduction potentials of nine (C 5 Me 4 H) 3 Ln complexes were also studied and found to be 0.05–0.24 V more negative than those of the Cp′ 3 Ln compounds. 
    more » « less
  2. null (Ed.)
  3. Abstract We present the spectroscopic characterization of cyclopropenethione in the laboratory and detect it in space using the Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules survey. The detection of this molecule—the missing link in understanding the C3H2S isomeric family in TMC-1—completes the detection of all three low-energy isomers of C3H2S, as both CH2CCS and HCCCHS have been previously detected in this source. The total column density of this molecule (NTof 5.7 2 1.61 + 2.65 × 1 0 10 cm−2at an excitation temperature of 4 . 7 1.1 + 1.3 K) is smaller than both CH2CCS and HCCCHS and follows nicely the relative dipole principle (RDP), a kinetic rule of thumb for predicting isomer abundances that suggests that, all other chemistry among a family of isomers being the same, the member with the smallest dipole (μ) should be the most abundant. The RDP now holds for the astronomical abundance ratios of both the S-bearing and O-bearing counterparts observed in TMC-1; however, CH2CCO continues to elude detection in any astronomical source. 
    more » « less