Abstract The James Webb Space Telescope will be able to probe the atmospheres and surface properties of hot, terrestrial planets via emission spectroscopy. We identify 18 potentially terrestrial planet candidates detected by the Transiting Exoplanet Survey Satellite (TESS) that would make ideal targets for these observations. These planet candidates cover a broad range of planet radii ( R p ∼ 0.6–2.0 R ⊕ ) and orbit stars of various magnitudes ( K s = 5.78–10.78, V = 8.4–15.69) and effective temperatures ( T eff ∼ 3000–6000 K). We use ground-based observations collected through the TESS Follow-up Observing Program (TFOP) and two vetting tools— DAVE and TRICERATOPS —to assess the reliabilities of these candidates as planets. We validate 13 planets: TOI-206 b, TOI-500 b, TOI-544 b, TOI-833 b, TOI-1075 b, TOI-1411 b, TOI-1442 b, TOI-1693 b, TOI-1860 b, TOI-2260 b, TOI-2411 b, TOI-2427 b, and TOI-2445 b. Seven of these planets (TOI-206 b, TOI-500 b, TOI-1075 b, TOI-1442 b, TOI-2260 b, TOI-2411 b, and TOI-2445 b) are ultra-short-period planets. TOI-1860 is the youngest (133 ± 26 Myr) solar twin with a known planet to date. TOI-2260 is a young (321 ± 96 Myr) G dwarf that is among the most metal-rich ([Fe/H] = 0.22 ± 0.06 dex) stars to host an ultra-short-period planet. With an estimated equilibrium temperature of ∼2600 K, TOI-2260 b is also the fourth hottest known planet with R p < 2 R ⊕ .
more »
« less
The TESS-Keck Survey: * Science Goals and Target Selection
Abstract The Kepler and TESS missions have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here, we introduce the TESS-Keck Survey (TKS), an RV program using ∼100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K ≤ T eff <6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets ( R p ≤ 4 R ⊕ ), 11 systems with multiple transiting candidates, six sub-day-period planets and three planets that are in or near the habitable zone ( S inc ≤ 10 S ⊕ ) of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available and can be adapted for any survey that requires a balance of multiple science interests within a given telescope allocation.
more »
« less
- PAR ID:
- 10358416
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 163
- Issue:
- 6
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 297
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the Transiting Exoplanet Survey Satellite (TESS) discovery of the LHS 1678 (TOI-696) exoplanet system, comprised of two approximately Earth-sized transiting planets and a likely astrometric brown dwarf orbiting a bright ( V J = 12.5, K s = 8.3) M2 dwarf at 19.9 pc. The two TESS-detected planets are of radius 0.70 ± 0.04 R ⊕ and 0.98 ± 0.06 R ⊕ in 0.86 day and 3.69 day orbits, respectively. Both planets are validated and characterized via ground-based follow-up observations. High Accuracy Radial Velocity Planet Searcher RV monitoring yields 97.7 percentile mass upper limits of 0.35 M ⊕ and 1.4 M ⊕ for planets b and c, respectively. The astrometric companion detected by the Cerro Tololo Inter-American Observatory/Small and Moderate Aperture Telescope System 0.9 m has an orbital period on the order of decades and is undetected by other means. Additional ground-based observations constrain the companion to being a high-mass brown dwarf or smaller. Each planet is of unique interest; the inner planet has an ultra-short period, and the outer planet is in the Venus zone. Both are promising targets for atmospheric characterization with the James Webb Space Telescope and mass measurements via extreme-precision radial velocity. A third planet candidate of radius 0.9 ± 0.1 R ⊕ in a 4.97 day orbit is also identified in multicycle TESS data for validation in future work. The host star is associated with an observed gap in the lower main sequence of the Hertzsprung–Russell diagram. This gap is tied to the transition from partially to fully convective interiors in M dwarfs, and the effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. The culmination of these system properties makes LHS 1678 a unique, compelling playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars.more » « less
-
Abstract Planet formation is expected to be severely limited in disks of low metallicity, owing to both the small solid mass reservoir and the low-opacity accelerating the disk gas dissipation. While previous studies have found a weak correlation between the occurrence rates of small planets (≲4R⊕) and stellar metallicity, so far no studies have probed below the metallicity limit beyond which planet formation is predicted to be suppressed. Here, we constructed a large catalog of ∼110,000 metal-poor stars observed by the TESS mission with spectroscopically derived metallicities, and systematically probed planet formation within the metal-poor regime ([Fe/H] ≤−0.5) for the first time. Extrapolating known higher-metallicity trends for small, short-period planets predicts the discovery of ∼68 super-Earths around these stars (∼85,000 stars) after accounting for survey completeness; however, we detect none. As a result, we have placed the most stringent upper limit on super-Earth occurrence rates around metal-poor stars (−0.75 < [Fe/H] ≤ −0.5) to date, ≤ 1.67%, a statistically significant (p-value = 0.000685) deviation from the prediction of metallicity trends derived with Kepler and K2. We find a clear host star metallicity cliff for super-Earths that could indicate the threshold below which planets are unable to grow beyond an Earth-mass at short orbital periods. This finding provides a crucial input to planet-formation theories, and has implications for the small planet inventory of the Galaxy and the galactic epoch at which the formation of small planets started.more » « less
-
Abstract Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (NotchandLOCoR). We find that the planets are 2.10 ± 0.09R⊕and 2.88 ± 0.10R⊕and orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K= 9.1 mag), small (R*= 0.44R⊙), and cool (Teff= 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST.more » « less
-
Abstract Stellar radial-velocity (RV) jitter due to surface activity may bias the RV semiamplitude and mass of rocky planets. The amplitude of the jitter may be estimated from the uncertainty in the rotation period, allowing the mass to be more accurately obtained. We find candidate rotation periods for 17 out of 35 TESS Objects of Interest (TOI) hosting <3R⊕planets as part of the Magellan-TESS survey, which is the first-ever statistically robust study of exoplanet masses and radii across the photoevaporation gap. Seven periods are ≥3σdetections, two are ≥1.5σ, and eight show plausible variability, but the periods remain unconfirmed. The other 18 TOIs are nondetections. Candidate rotators include the host stars of the confirmed planets L 168-9 b, the HD 21749 system, LTT 1445 A b, TOI 1062 b, and the L 98-59 system. Thirteen candidates have no counterpart in the 1000 TOI rotation catalog of Canto Martins et al. We find periods for G3–M3 dwarfs using combined light curves from TESS and the Evryscope all-sky array of small telescopes, sometimes with longer periods than would be possible with TESS alone. Secure periods range from 1.4 to 26 days with Evryscope-measured photometric amplitudes as small as 2.1 mmag in . We also apply Monte Carlo sampling and a Gaussian process stellar activity model fromexoplanetto the TESS light curves of six TOIs to confirm the Evryscope periods.more » « less