skip to main content


Title: RNA multimerization as an organizing force for liquid–liquid phase separation
RNA interactions are exceptionally strong and highly redundant. As such, nearly any two RNAs have the potential to interact with one another over relatively short stretches, especially at high RNA concentrations. This is especially true for pairs of RNAs that do not form strong self-structure. Such phenomena can drive liquid–liquid phase separation, either solely from RNA–RNA interactions in the presence of divalent or organic cations, or in concert with proteins. RNA interactions can drive multimerization of RNA strands via both base-pairing and tertiary interactions. In this article, we explore the tendency of RNA to form stable monomers, dimers, and higher order structures as a function of RNA length and sequence through a focus on the intrinsic thermodynamic, kinetic, and structural properties of RNA. The principles we discuss are independent of any specific type of biomolecular condensate, and thus widely applicable. We also speculate how external conditions experienced by living organisms can influence the formation of nonmembranous compartments, again focusing on the physical and structural properties of RNA. Plants, in particular, are subject to diverse abiotic stresses including extreme temperatures, drought, and salinity. These stresses and the cellular responses to them, including changes in the concentrations of small molecules such as polyamines, salts, and compatible solutes, have the potential to regulate condensate formation by melting or strengthening base-pairing. Reversible condensate formation, perhaps including regulation by circadian rhythms, could impact biological processes in plants, and other organisms.  more » « less
Award ID(s):
2122357 2122358
NSF-PAR ID:
10358421
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
RNA
Volume:
28
Issue:
1
ISSN:
1355-8382
Page Range / eLocation ID:
16 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nucleic Acid (NA) nanotechnology is a rapidly emerging field demonstrating application of polynucleotides as a versatile biopolymer to fabricate nanostructures of various dimensions and shapes in a programmable and highly predictable way. The folding of DNA or RNA strands into a stable double helix configuration mainly relies on the Watson-Crick (Canonical) base pair composition (G=C and A-T or A-U in the case of RNA), base stacking, and metal ion concentrations. The thermodynamic parameters of DNA B-form helix formation and A-form helix of RNA can be computed using empirically defined sets of nearest neighboring parameters encompassed within the 2D structure predicting programs for example mfold, NUPAC. However, these programs are lacking parameters for a hybrid DNA/RNA base pairing and non-canonical base interactions. In this report, we focused our study to evaluate thermodynamic parameters of several in silico designed three-way junction (3WJ) DNA and hybrid DNA-RNA structural elements. The designed 3WJ motifs contain three helical stems linked with 4,3,2,1, and 0 single stranded Thymidine (T) or Uridine (U) nucleotides. We will report assembly efficiency of the 3WJs investigated by gel shift assay and thermodynamic parameters measured by UV-melting technique. Our experiments reveal that the amount of Ts and Us linkages in the three-way junction dictate the stability of the overall 3WJ conformations. This study is important as we expect it will contribute to the existing set of parameters used for NA structure prediction algorithms as well as provide a guidance for rational design of NA nanostructures. 
    more » « less
  2. Abstract

    Living systems contain various membraneless organelles that segregate proteins and RNAs via liquid–liquid phase separation. Inspired by nature, many protein-based synthetic compartments have been engineered in vitro and in living cells. Here, we introduce a genetically encoded CAG-repeat RNA tag to reprogram cellular condensate formation and recruit various non-phase-transition RNAs for cellular modulation. With the help of fluorogenic RNA aptamers, we have systematically studied the formation dynamics, spatial distributions, sizes and densities of these cellular RNA condensates. The cis- and trans-regulation functions of these CAG-repeat tags in cellular RNA localization, life time, RNA–protein interactions and gene expression have also been investigated. Considering the importance of RNA condensation in health and disease, we expect that these genetically encodable modular and self-assembled tags can be widely used for chemical biology and synthetic biology studies.

     
    more » « less
  3. John Pham, Ph.D. Editor-in-Chief (Ed.)
    The target DNA specificity of the CRISPR-associated genome editor nuclease Cas9 is determined by complementarity to a 20-nucleotide segment in its guide RNA. However, Cas9 can bind and cleave partially complementary off-target sequences, which raises safety concerns for its use in clinical applications. Here we report crystallographic structures of Cas9 bound to bona fide off-target substrates, revealing that off-target binding is enabled by a range of non-canonical base-pairing interactions and preservation of base stacking within the guide–off-target heteroduplex. Off-target sites containing single-nucleotide deletions relative to the guide RNA are accommodated by base skipping or multiple non-canonical base pairs rather than RNA bulge formation. Additionally, PAM-distal mismatches result in duplex unpairing and induce a conformational change of the Cas9 REC lobe that perturbs its conformational activation. Together, these insights provide a structural rationale for the off-target activity of Cas9 and contribute to the improved rational design of guide RNAs and off-target prediction algorithms. 
    more » « less
  4. NA (Ed.)

    Nucleic acids (NAs) in modern biology accomplish a variety of tasks, and the emergence of primitive nucleic acids is broadly recognized as a crucial step for the emergence of life. While modern NAs have been optimized by evolution to accomplish various biological functions, such as catalysis or transmission of genetic information, primitive NAs could have emerged and been selected based on more rudimental chemical–physical properties, such as their propensity to self-assemble into supramolecular structures. One such supramolecular structure available to primitive NAs are liquid crystal (LC) phases, which are the outcome of the collective behavior of short DNA or RNA oligomers or monomers that self-assemble into linear aggregates by combinations of pairing and stacking. Formation of NA LCs could have provided many essential advantages for a primitive evolving system, including the selection of potential genetic polymers based on structure, protection by compartmentalization, elongation, and recombination by enhanced abiotic ligation. Here, we review recent studies on NA LC assembly, structure, and functions with potential prebiotic relevance. Finally, we discuss environmental or geological conditions on early Earth that could have promoted (or inhibited) primitive NA LC formation and highlight future investigation axes essential to further understanding of how LCs could have contributed to the emergence of life.

     
    more » « less
  5. Abstract Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, two of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies, in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance. 
    more » « less