skip to main content

Title: Efficient Low Cost Alternative Testing of Analog Crossbar Arrays for Deep Neural Networks
Analog crossbar arrays have recently attracted significant attention due to their usefulness for deep neural net (DNN) computations with ultra-low power consumption. However, recent studies have shown that DNNs implemented with such crossbar arrays suffer from as high as 30% degradation in performance due to the effects of manufacturing process variability effects resulting in degradation of their functional safety. One way to test these DNNs is to apply an exhaustive set of test images to each device to ascertain its performance. This is expensive and time-consuming. We propose an alternative test scheme in which a small subset of test images is applied to each DNN and the classification accuracy of the DNN is predicted directly from observation of the final layer outputs of the network. This saves test cost while allowing binning of DNNs for performance. Experimental results for a variety of test cases are presented and show test efficiency improvements of 3X over testing with the exhaustive test image set.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
International Test Conference
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The reliability of emerging neuromorphic compute fabrics is of great concern due to their widespread use in critical data-intensive applications. Ensuring such reliability is difficult due to the intensity of underlying computations (billions of parameters), errors induced by low power operation and the complex relationship between errors in computations and their effect on network performance accuracy. We study the problem of designing error-resilient neuromorphic systems where errors can stem from: (a) soft errors in computation of matrix-vector multiplications and neuron activations, (b) malicious trojan and adversarial security attacks and (c) effects of manufacturing process variations on analog crossbar arrays that can affect DNN accuracy. The core principle of error detection relies on embedded predictive neuron checks using invariants derived from the statistics of nominal neuron activation patterns of hidden layers of a neural network. Algorithmic encodings of hidden neuron function are also used to derive invariants for checking. A key contribution is designing checks that are robust to the inherent nonlinearity of neuron computations with minimal impact on error detection coverage. Once errors are detected, they are corrected using probabilistic methods due to the difficulties involved in exact error diagnosis in such complex systems. The technique is scalable across soft errors as well as a range of security attacks. The effects of manufacturing process variations are handled through the use of compact tests from which DNN performance can be assessed using learning techniques. Experimental results on a variety of neuromorphic test systems: DNNs, spiking networks and hyperdimensional computing are presented. 
    more » « less
  2. In this work, we investigate various non-ideal effects (Stuck-At-Fault (SAF), IR-drop, thermal noise, shot noise, and random telegraph noise)of ReRAM crossbar when employing it as a dot-product engine for deep neural network (DNN) acceleration. In order to examine the impacts of those non-ideal effects, we first develop a comprehensive framework called PytorX based on main-stream DNN pytorch framework. PytorX could perform end-to-end training, mapping, and evaluation for crossbar-based neural network accelerator, considering all above discussed non-ideal effects of ReRAM crossbar together. Experiments based on PytorX show that directly mapping the trained large scale DNN into crossbar without considering these non-ideal effects could lead to a complete system malfunction (i.e., equal to random guess) when the neural network goes deeper and wider. In particular, to address SAF side effects, we propose a digital SAF error correction algorithm to compensate for crossbar output errors, which only needs one-time profiling to achieve almost no system accuracy degradation. Then, to overcome IR drop effects, we propose a Noise Injection Adaption (NIA) methodology by incorporating statistics of current shift caused by IR drop in each crossbar as stochastic noise to DNN training algorithm, which could efficiently regularize DNN model to make it intrinsically adaptive to non-ideal ReRAM crossbar. It is a one-time training method without the request of retraining for every specific crossbar. Optimizing system operating frequency could easily take care of rest non-ideal effects. Various experiments on different DNNs using image recognition application are conducted to show the efficacy of our proposed methodology. 
    more » « less
  3. Model compression is an important technique to facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), a number of prior works are dedicated to model compression techniques. The target is to simultaneously reduce the model storage size and accelerate the computation, with minor effect on accuracy. Two important categories of DNN model compression techniques are weight pruning and weight quantization. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. These two sources of redundancy can be combined, thereby leading to a higher degree of DNN model compression. However, a systematic framework of joint weight pruning and quantization of DNNs is lacking, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted besides simply model size reduction, and the hardware performance overhead resulted from weight pruning method needs to be taken into consideration. To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to solve non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than the state-of-the-art. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations. We perform ADMM-based weight pruning and quantization considering (i) the computation reduction and energy efficiency improvement, and (ii) the hardware performance overhead due to irregular sparsity. The first requirement prioritizes the convolutional layer compression over fully-connected layers, while the latter requires a concept of the break-even pruning ratio, defined as the minimum pruning ratio of a specific layer that results in no hardware performance degradation. Without accuracy loss, ADMM-NN achieves 85× and 24× pruning on LeNet-5 and AlexNet models, respectively, --- significantly higher than the state-of-the-art. The improvements become more significant when focusing on computation reduction. Combining weight pruning and quantization, we achieve 1,910× and 231× reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50. We release codes and models at 
    more » « less
  4. Deep neural networks (DNNs) have emerged as the most powerful machine learning technique in numerous artificial intelligent applications. However, the large sizes of DNNs make themselves both computation and memory intensive, thereby limiting the hardware performance of dedicated DNN accelerators. In this paper, we propose a holistic framework for energy-efficient high-performance highly-compressed DNN hardware design. First, we propose block-circulant matrix-based DNN training and inference schemes, which theoretically guarantee Big-O complexity reduction in both computational cost (from O(n2) to O(n log n)) and storage requirement (from O(n2) to O(n)) of DNNs. Second, we dedicatedly optimize the hardware architecture, especially on the key fast Fourier transform (FFT) module, to improve the overall performance in terms of energy efficiency, computation performance and resource cost. Third, we propose a design flow to perform hardware-software co-optimization with the purpose of achieving good balance between test accuracy and hardware performance of DNNs. Based on the proposed design flow, two block-circulant matrix-based DNNs on two different datasets are implemented and evaluated on FPGA. The fixed-point quantization and the proposed block-circulant matrix-based inference scheme enables the network to achieve as high as 3.5 TOPS computation performance and 3.69 TOPS/W energy efficiency while the memory is saved by 108X ~ 116X with negligible accuracy degradation. 
    more » « less
  5. We propose AccHashtag, the first framework for high-accuracy detection of fault-injection attacks on Deep Neural Networks (DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN accuracy degradation caused by bit flips. In this scenario, the attacker changes a few DNN weight bits during execution by injecting faults to the dynamic random-access memory (DRAM). To detect bit flips, AccHashtag extracts a unique signature from the benign DNN prior to deployment. The signature is used to validate the model’s integrity and verify the inference output on the fly. We propose a novel sensitivity analysis that identifies the most vulnerable DNN layers to the fault-injection attack. The DNN signature is constructed by encoding the weights in vulnerable layers using a low-collision hash function. During DNN inference, new hashes are extracted from the target layers and compared against the ground-truth signatures. AccHashtag incorporates a lightweight methodology that allows for real-time fault detection on embedded platforms. We devise a specialized compute core for AccHashtag on field-programmable gate arrays (FPGAs) to facilitate online hash generation in parallel to DNN execution. Extensive evaluations with the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage of AccHashtag in terms of both attack detection and execution overhead. 
    more » « less