skip to main content


Title: Automated Analysis of the US Drought Monitor Maps With Machine Learning and Multiple Drought Indicators
The US Drought Monitor (USDM) is a hallmark in real time drought monitoring and assessment as it was developed by multiple agencies to provide an accurate and timely assessment of drought conditions in the US on a weekly basis. The map is built based on multiple physical indicators as well as reported observations from local contributors before human analysts combine the information and produce the drought map using their best judgement. Since human subjectivity is included in the production of the USDM maps, it is not an entirely clear quantitative procedure for other entities to reproduce the maps. In this study, we developed a framework to automatically generate the maps through a machine learning approach by predicting the drought categories across the domain of study. A persistence model served as the baseline model for comparison in the framework. Three machine learning algorithms, logistic regression, random forests, and support vector machines, with four different groups of input data, which formed an overall of 12 different configurations, were used for the prediction of drought categories. Finally, all the configurations were evaluated against the baseline model to select the best performing option. The results showed that our proposed framework could reproduce the drought maps to a near-perfect level with the support vector machines algorithm and the group 4 data. The rest of the findings of this study can be highlighted as: 1) employing the past week drought data as a predictor in the models played an important role in achieving high prediction scores, 2) the nonlinear models, random forest, and support vector machines had a better overall performance compared to the logistic regression models, and 3) with borrowing the neighboring grid cells information, we could compensate the lack of training data in the grid cells with insufficient historical USDM data particularly for extreme and exceptional drought conditions.  more » « less
Award ID(s):
2006633
NSF-PAR ID:
10358728
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Frontiers in Big Data
Volume:
4
ISSN:
2624-909X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous moderate- and high-temperature geothermal resource assessments of the western United States utilized weight-of-evidence and logistic regression methodstoestimateresourcefavorability,buttheseanalyses relied uponsomeexpert decisions.Whileexpert decisions can add confidence to aspects of the modeling process by ensuring only reasonable models are employed, expert decisions also introduce human bias into assessments. This bias presents a source of error that may affect the performance of the models and resulting resource estimates. Our study aims to reduce expert input through robust data-driven analyses and better-suited data science techniques, with the goals of saving time, reducing bias, and improving predictive ability. We present six favorability maps for geothermal resources in the western United States created using two strategies applied to three modern machine learning algorithms (logistic regression, support- vector machines, and XGBoost). To provide a direct comparison to previous assessments, we use the same input data as the 2008 U.S. Geological Survey (USGS) conventional moderate- to high-temperature geothermal resource assessment. The six new favorability maps required far less expert decision-making, but broadly agree with the previous assessment. Despite the fact that the 2008 assessment results employed linear methods, the non-linear machine learning algorithms (i.e., support-vector machines and XGBoost) produced greater agreement with the previous assessment than the linear machine learning algorithm (i.e., logistic regression). It is not surprising that geothermal systems depend on non-linear combinations of features, and we postulate that the expert decisions during the 2008 assessment accounted for system non-linearities. Substantial challenges to applying machine learning algorithms to predict geothermal resource favorability include severe class imbalance (i.e., there are very few known geothermal systems compared to the large area considered), and while there are known geothermal systems (i.e., positive labels), all other sites have an unknown status (i.e., they are unlabeled), instead of receiving a negative label (i.e., the known/proven absence of a geothermal resource). We address both challenges through a custom undersampling strategy that can be used with any algorithm and then evaluated using F1 scores. 
    more » « less
  2. Previous moderate- and high-temperature geothermal resource assessments of the western United States utilized weight-of-evidence and logistic regression methodstoestimateresourcefavorability,buttheseanalyses relied uponsomeexpert decisions.Whileexpert decisions can add confidence to aspects of the modeling process by ensuring only reasonable models are employed, expert decisions also introduce human bias into assessments. This bias presents a source of error that may affect the performance of the models and resulting resource estimates. Our study aims to reduce expert input through robust data-driven analyses and better-suited data science techniques, with the goals of saving time, reducing bias, and improving predictive ability. We present six favorability maps for geothermal resources in the western United States created using two strategies applied to three modern machine learning algorithms (logistic regression, support- vector machines, and XGBoost). To provide a direct comparison to previous assessments, we use the same input data as the 2008 U.S. Geological Survey (USGS) conventional moderate- to high-temperature geothermal resource assessment. The six new favorability maps required far less expert decision-making, but broadly agree with the previous assessment. Despite the fact that the 2008 assessment results employed linear methods, the non-linear machine learning algorithms (i.e., support-vector machines and XGBoost) produced greater agreement with the previous assessment than the linear machine learning algorithm (i.e., logistic regression). It is not surprising that geothermal systems depend on non-linear combinations of features, and we postulate that the expert decisions during the 2008 assessment accounted for system non-linearities. Substantial challenges to applying machine learning algorithms to predict geothermal resource favorability include severe class imbalance (i.e., there are very few known geothermal systems compared to the large area considered), and while there are known geothermal systems (i.e., positive labels), all other sites have an unknown status (i.e., they are unlabeled), instead of receiving a negative label (i.e., the known/proven absence of a geothermal resource). We address both challenges through a custom undersampling strategy that can be used with any algorithm and then evaluated using F1 scores. 
    more » « less
  3. Machine learning (ML) methods, such as artificial neural networks (ANN), k-nearest neighbors (kNN), random forests (RF), support vector machines (SVM), and boosted decision trees (DTs), may offer stronger predictive performance than more traditional, parametric methods, such as linear regression, multiple linear regression, and logistic regression (LR), for specific mapping and modeling tasks. However, this increased performance is often accompanied by increased model complexity and decreased interpretability, resulting in critiques of their “black box” nature, which highlights the need for algorithms that can offer both strong predictive performance and interpretability. This is especially true when the global model and predictions for specific data points need to be explainable in order for the model to be of use. Explainable boosting machines (EBM), an augmentation and refinement of generalize additive models (GAMs), has been proposed as an empirical modeling method that offers both interpretable results and strong predictive performance. The trained model can be graphically summarized as a set of functions relating each predictor variable to the dependent variable along with heat maps representing interactions between selected pairs of predictor variables. In this study, we assess EBMs for predicting the likelihood or probability of slope failure occurrence based on digital terrain characteristics in four separate Major Land Resource Areas (MLRAs) in the state of West Virginia, USA and compare the results to those obtained with LR, kNN, RF, and SVM. EBM provided predictive accuracies comparable to RF and SVM and better than LR and kNN. The generated functions and visualizations for each predictor variable and included interactions between pairs of predictor variables, estimation of variable importance based on average mean absolute scores, and provided scores for each predictor variable for new predictions add interpretability, but additional work is needed to quantify how these outputs may be impacted by variable correlation, inclusion of interaction terms, and large feature spaces. Further exploration of EBM is merited for geohazard mapping and modeling in particular and spatial predictive mapping and modeling in general, especially when the value or use of the resulting predictions would be greatly enhanced by improved interpretability globally and availability of prediction explanations at each cell or aggregating unit within the mapped or modeled extent. 
    more » « less
  4. Abstract

    An intelligent sensing framework using Machine Learning (ML) and Deep Learning (DL) architectures to precisely quantify dielectrophoretic force invoked on microparticles in a textile electrode-based DEP sensing device is reported. The prediction accuracy and generalization ability of the framework was validated using experimental results. Images of pearl chain alignment at varying input voltages were used to build deep regression models using modified ML and CNN architectures that can correlate pearl chain alignment patterns of Saccharomyces cerevisiae(yeast) cells and polystyrene microbeads to DEP force. Various ML models such as K-Nearest Neighbor, Support Vector Machine, Random Forest, Neural Networks, and Linear Regression along with DL models such as Convolutional Neural Network (CNN) architectures of AlexNet, ResNet-50, MobileNetV2, and GoogLeNet have been analyzed in order to build an effective regression framework to estimate the force induced on yeast cells and microbeads. The efficiencies of the models were evaluated using Mean Absolute Error, Mean Absolute Relative, Mean Squared Error, R-squared, and Root Mean Square Error (RMSE) as evaluation metrics. ResNet-50 with RMSPROP gave the best performance, with a validation RMSE of 0.0918 on yeast cells while AlexNet with ADAM optimizer gave the best performance, with a validation RMSE of 0.1745 on microbeads. This provides a baseline for further studies in the application of deep learning in DEP aided Lab-on-Chip devices.

     
    more » « less
  5. Abstract

    Predicting the range of substrates accepted by an enzyme from its amino acid sequence is challenging. Although sequence‐ and structure‐based annotation approaches are often accurate for predicting broad categories of substrate specificity, they generally cannot predict which specific molecules will be accepted as substrates for a given enzyme, particularly within a class of closely related molecules. Combining targeted experimental activity data with structural modeling, ligand docking, and physicochemical properties of proteins and ligands with various machine learning models provides complementary information that can lead to accurate predictions of substrate scope for related enzymes. Here we describe such an approach that can predict the substrate scope of bacterial nitrilases, which catalyze the hydrolysis of nitrile compounds to the corresponding carboxylic acids and ammonia. Each of the four machine learning models (logistic regression, random forest, gradient‐boosted decision trees, and support vector machines) performed similarly (average ROC = 0.9, average accuracy = ~82%) for predicting substrate scope for this dataset, although random forest offers some advantages. This approach is intended to be highly modular with respect to physicochemical property calculations and software used for structural modeling and docking.

     
    more » « less