skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Who loses and who wins in the ride-hailing era? A case study of Austin, Texas
Award ID(s):
2133302
PAR ID:
10358921
Author(s) / Creator(s):
 ; ; ;  
Date Published:
Journal Name:
Transport Policy
Volume:
120
Issue:
C
ISSN:
0967-070X
Page Range / eLocation ID:
130 to 138
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As predictive models are deployed into the real world, they must increasingly contend with strategic behavior. A growing body of work on strategic classification treats this problem as a Stackelberg game: the decision-maker "leads" in the game by deploying a model, and the strategic agents "follow" by playing their best response to the deployed model. Importantly, in this framing, the burden of learning is placed solely on the decision-maker, while the agents' best responses are implicitly treated as instantaneous. In this work, we argue that the order of play in strategic classification is fundamentally determined by the relative frequencies at which the decision-maker and the agents adapt to each other's actions. In particular, by generalizing the standard model to allow both players to learn over time, we show that a decision-maker that makes updates faster than the agents can reverse the order of play, meaning that the agents lead and the decision-maker follows. We observe in standard learning settings that such a role reversal can be desirable for both the decision-maker and the strategic agents. Finally, we show that a decision-maker with the freedom to choose their update frequency can induce learning dynamics that converge to Stackelberg equilibria with either order of play. 
    more » « less
  2. null (Ed.)
  3. A recent S-STEM award has allowed the engineering program in a rural, liberal arts institution to offer a need-based scholarship program for its students. The engineering program has a number of veteran, underrepresented minority, transfer, and nontraditional students. Many students are also first-generation college students. The institution and engineering program matriculate a number of under-served populations, students who may have needs that are not well understood in the typical engineering education literature. The scholarship program and its associated mentoring and activities will assist workforce development and will also incorporate a number of research avenues to better understand and serve the student population in this unique setting. To apply for the program, students must fill out an application with four 250 – 500 word essay responses relating to their academic progress, perceived barriers to degree completion, and how this award would help them to complete their degree. This initial study seeks to analyze the student applications to explore which students are applying for the new scholarship program and which students are successful in their applications. Responses to the application questions will be analyzed to develop an archetypical applicant, an archetypical successful applicant, and an archetypical unsuccessful applicant. Similar to the IDEO method of creating a specific client to design for, these profiles will not encompass all possible student responses; not all students who would be grouped with the archetype would see themselves in the archetype. Rather, these archetypes will help us to define students that we can use as a model when we are developing programs for the students in the scholarship program and the student body as a whole. These profiles will be presented and used to generate an understanding of which students are likely to choose to apply and which students may be missing out on this opportunity. At this time, the applications are not yet due and the analysis has not yet begun. Initial interest for the grant has been strong and we anticipate at least thirty applications for the nineteen available grants. Results presented will include the three student profiles as well as a report of the perceived barriers to graduation as reported by applicants in their application materials. 
    more » « less
  4. To mitigate IPv4 exhaustion, IPv6 provides expanded address space, and NAT allows a single public IPv4 address to suffice for many devices assigned private IPv4 address space. Even though NAT has greatly extended the shelf-life of IPv4, some networks need more private IPv4 space than what is officially allocated by IANA due to their size and/or network management practices. Some of these networks resort to using squat space , a term the network operations community uses for large public IPv4 address blocks allocated to organizations but historically never announced to the Internet. While squatting of IP addresses is an open secret, it introduces ethical, legal, and technical problems. In this work we examine billions of traceroutes to identify thousands of organizations squatting. We examine how they are using it and what happened when the US Department of Defense suddenly started announcing what had traditionally been squat space. In addition to shining light on a dirty secret of operational practices, our paper shows that squatting distorts common Internet measurement methodologies, which we argue have to be re-examined to account for squat space. 
    more » « less