skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seeing Yourself as a Scientist: Increasing Science Identity Using Professional Development Modules Designed for Undergraduate Students
ABSTRACT As educators, we should not assume that students are progressing toward intended STEM careers simply because they have persisted and received a STEM degree. In addition to learning biology content and scientific skills, students need guidance in making optimal career choices. In this study, we present seven career development modules designed specifically to motivate students to consider their successes as scientists and to consider applying their biological knowledge and scientific skills to a range of biology careers. These modules highlight the value and the utility of a biology degree and are, therefore, designed to increase students’ self-confidence as well as their science and biology identities. The career development modules presented here are easy to implement and, in our experience, encourage engagement and class discussions. Our analyses confirm that these modules collectively increase student science and biology identities, two predictors for entry into STEM careers.  more » « less
Award ID(s):
2029756
PAR ID:
10359020
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
Volume:
23
Issue:
1
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seagroves, Scott; Barnes, Austin; Metevier, Anne; Porter, Jason; Hunter, Lisa (Ed.)
    Research suggests that developing an identity as a person in STEM is necessary for learners from marginalized groups to persist in STEM education and careers. These learners may perceive that their race, gender, or other characteristics make it difficult for their peers and supervisors to recognize them as scientists or engineers, thus disrupting their ability to maintain successful degree progress and to pursue their STEM career aspirations. Here we discuss the specific ways we designed inquiry workshops to not only clarify difficult core STEM content, but to also promote learners’ competence, performance, and targeted recognition as scientists. Our workshops were designed for students interested in chemistry, climate science, physics, and toxicology at the University of California, Santa Cruz (UCSC), Workshops for Engineering & Science Transfers (WEST) 2019 program. In designing our workshops, we focused on promoting the scientific identities of our learners by incorporating authentic ways for students to receive recognition from both peers and instructional facilitators, as well as allowing students to tap into their own personal interests and values. Insights from our designed assessments for learners’ understanding of our content demonstrate the success of our initiatives and provide further areas of improvement. Our goals are to create inclusive workshops to support students from all backgrounds, with emphasis on underrepresented backgrounds (community college, first generation, students of color, women, and LGBTQ+ students, etc.) as well as support them in other contexts, such as when mentoring STEM students in academic laboratory settings. 
    more » « less
  2. In response to the low representation of Latinx adults in STEM occupations, this community-based participatory action research study aims to increase the number of middle school youths developing STEM career identities and entering high school with the intention to pursue STEM careers. The students were provided with summer and after-school activities focusing on network science and career development curricula. Using a quasi-experimental pretest–posttest design and career narratives, this study examined the changes in STEM and career self-efficacy, as well as career identity. The results show improvements in self-efficacy, an increased number of youths with intentions of pursuing future STEM career opportunities, and deeper reflections on their talents and skills after program participation. This paper also describes the program development and implementation in detail, as well as the adaptations that resulted from COVID-19, for scholars and educators designing similar programs. This study provides promising evidence for the quality of STEM and career development lessons in supporting the emergence of a STEM career identity and self-efficacy. 
    more » « less
  3. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM-related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering-related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How do the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  4. This Work in Progress (WIP) paper describes the development of a middle school program focused on an integrated STEM architectural engineering design project and exploration of career pathways. The current engineering workforce is increasingly aging, needing new engineering graduates to meet the industry demands. It is crucial to create inclusive educational programs in STEM to expose and connect with youths from diverse backgrounds, especially the demographics that are underrepresented, in STEM career paths. Middle school is a pivotal time for generating students’ awareness of and promoting pathways into STEM careers; however, opportunities to engage in engineering are often lacking or nonexistent, particularly for low-income students. Additionally, low-income students may bring particular experiences and skills from their backgrounds to engineering that may increase the innovation of engineering solutions. These assets are important to recognize and cultivate in young students. The Middle School Architectural Engineering Pilot Program (MSAEPP), drawing from social cognitive career theory and identity-based motivation, is an intervention designed to affect STEM related content and STEM identities, motivation, and career goals for low-income students using relatable topics within the building industry. The focus on architectural engineering activities is because buildings, and the industry they represent, touch everyone’s lives. The MSAEPP is planned to be implemented through the Talent Search Programs at middle schools in Pennsylvania. The Talent Search Program is one of the Federal TRIO Programs dedicated to assisting high school students in furthering their education. Penn State Talent Search Programs serve 22 schools in 8 impoverished school districts. The pilot program engages middle school students (seventh and eighth grade) in architectural engineering related lessons and activities, by exploring engineering identities interactions with architectural engineering industry professionals, and by planning potential career pathways in architectural engineering and other STEM careers with Talent Search Counselors. The purpose of this paper is to present the background and process used in this funded NSF project for developing the suite of architectural engineering related lessons and activities and the research plan for answering the research question: How does the combination of meaningful engineering learning, exposure to professional engineers, and career planning, focused on building industry engineering applications, increase identity-based motivation of students from low-income households and marginalized students in pursuing STEM careers? Answering this question will inform future work developing interventions that target similar goals and will validate and expand the identity-based motivation framework. Keywords: middle school, identity, motivation, informal education. 
    more » « less
  5. High school science and math classes can often seem irrelevant to the everyday lives ofstudents leading to difficulties in engaging students in these topics. Moreover, limitedopportunities for hands-on learning can further perpetuate perceptions of subject matter difficultyand result in limited exposure to available career paths. By incorporating hands-on curriculummodules in geotechnical engineering, it is possible to overcome these issues while providingstudents with real-world applications making the material more engaging and meaningful. Thispaper presents two curriculum modules developed as part of the National Science Foundation-funded Research Experiences for Teachers (RET) site at North Dakota State University. Thesemodules—one for a high school science class and one for a high school math class—weredeveloped with the aim of promoting science, technology, engineering, and mathematicseducation (STEM), while inspiring students to consider careers in geotechnical engineering. Thelessons are designed to align with the Next Generation Science Standards and include hands-onactivities along with real-world applications to enhance student understanding of the subjectmatter. The effectiveness of these modules was evaluated through formative and summativeassessment and student surveys. The results indicate that the modules can effectively engagestudents in geotechnical engineering by connecting the math and science concepts from theirclasses and increase their interest in STEM fields. These curriculum modules are a valuableresource for high school math and science teachers looking to integrate engineering into theirclasses. 
    more » « less