skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Complexity of Approximating the Matching Polynomial in the Complex Plane
We study the problem of approximating the value of the matching polynomial on graphs with edge parameter γ, where γ takes arbitrary values in the complex plane. When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on general graphs. For general complex values of γ, Patel and Regts, building on methods developed by Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree Δ as long as γ is not a negative real number less than or equal to −1/(4(Δ −1)). Our first main result completes the picture for the approximability of the matching polynomial on bounded degree graphs. We show that for all Δ ≥ 3 and all real γ less than −1/(4(Δ −1)), the problem of approximating the value of the matching polynomial on graphs of maximum degree Δ with edge parameter γ is #P-hard. We then explore whether the maximum degree parameter can be replaced by the connective constant. Sinclair et al. showed that for positive real γ, it is possible to approximate the value of the matching polynomial using a correlation decay algorithm on graphs with bounded connective constant (and potentially unbounded maximum degree). We first show that this result does not extend in general in the complex plane; in particular, the problem is #P-hard on graphs with bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we show that the result does extend for any complex value γ that does not lie on the negative real axis. Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the metric defined by an appropriate density function.  more » « less
Award ID(s):
2007287
PAR ID:
10359126
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Computation Theory
Volume:
13
Issue:
2
ISSN:
1942-3454
Page Range / eLocation ID:
1 to 37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Megow, Nicole; Smith, Adam (Ed.)
    We study the mixing time of the single-site update Markov chain, known as the Glauber dynamics, for generating a random independent set of a tree. Our focus is obtaining optimal convergence results for arbitrary trees. We consider the more general problem of sampling from the Gibbs distribution in the hard-core model where independent sets are weighted by a parameter λ > 0; the special case λ = 1 corresponds to the uniform distribution over all independent sets. Previous work of Martinelli, Sinclair and Weitz (2004) obtained optimal mixing time bounds for the complete Δ-regular tree for all λ. However, Restrepo et al. (2014) showed that for sufficiently large λ there are bounded-degree trees where optimal mixing does not hold. Recent work of Eppstein and Frishberg (2022) proved a polynomial mixing time bound for the Glauber dynamics for arbitrary trees, and more generally for graphs of bounded tree-width. We establish an optimal bound on the relaxation time (i.e., inverse spectral gap) of O(n) for the Glauber dynamics for unweighted independent sets on arbitrary trees. Moreover, for λ ≤ .44 we prove an optimal mixing time bound of O(n log n). We stress that our results hold for arbitrary trees and there is no dependence on the maximum degree Δ. Interestingly, our results extend (far) beyond the uniqueness threshold which is on the order λ = O(1/Δ). Our proof approach is inspired by recent work on spectral independence. In fact, we prove that spectral independence holds with a constant independent of the maximum degree for any tree, but this does not imply mixing for general trees as the optimal mixing results of Chen, Liu, and Vigoda (2021) only apply for bounded degree graphs. We instead utilize the combinatorial nature of independent sets to directly prove approximate tensorization of variance/entropy via a non-trivial inductive proof. 
    more » « less
  2. Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L_p-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS’13). The non-linearity of L_p-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L_p-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G(n, d/n), where the previously known algorithms run in time n^O(log d) or applied only to large d. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d, throughout the uniqueness regime. 
    more » « less
  3. Spectral independence is a recently-developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimal O(n log n) sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using L^p-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, Yin; FOCS'13). The non-linearity of L^p-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture the L^p-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graph G(n,d/n), where the previously known algorithms run in time n^O(log d) or applied only to large d. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant d, throughout the uniqueness regime. 
    more » « less
  4. Beyersdorff, Olaf; Kanté, Mamadou Moustapha; Kupferman, Orna; Lokshtanov, Daniel (Ed.)
    We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph. 
    more » « less
  5. In this paper, we generalize the recently studied stochastic matching problem to more accurately model a significant medical process, kidney exchange, and several other applications. Up until now the stochastic matching problem that has been studied was as follows: given a graph G= (V,E), each edge is included in the realized sub-graph of G independently with probability pe, and the goal is to find a degree-bounded sub-graph Q of G that has an expected maximum matching that approximates the expected maximum matching of G. This model does not account for possibilities of vertex dropouts, which can be found in several applications, e.g. in kidney exchange when donors or patients opt out of the exchange process as well as in online freelancing and online dating when online profiles are found to be faked. Thus, we will study a more generalized model of stochastic matching in which vertices and edges are both realized independently with some probabilities pv, pe, respectively, which more accurately fits important applications than the previously studied model. We will discuss the first algorithms and analysis for this generalization of the stochastic matching model and prove that they achieve good approximation ratios. In particular, we show that the approximation factor of a natural algorithm for this problem is at least 0.6568 in unweighted graphs, and 1/2+ε in weighted graphs for some constant ε >0. We further improve our result for unweighted graphs to 2/3 using edge degree constrained sub-graphs (EDCS). 
    more » « less