skip to main content


Title: Mixed Reality Learning Environments in Times of Pandemic: What Can We Learn?
This Work-in-Progress paper focuses on the qualitative aspects of a larger mixed-methods study about GeoExplorer, a game-based learning aspect of a mixed reality educational environment where students participate in a mock internship with the goal to complete a geotechnical mission involving Cone Penetration Testing, a civil engineering field technique students traditionally get very little exposure to due to its complexity and cost. This work seeks to understand how mixed reality learning environments, specifically game-based learning, support (i) creation of individualized hands-on learning opportunities, particularly during the pandemic-driven remote learning paradigm, and (ii) students' development along various noncognitive axes - confidence and motivation. Methods of narrative analyses and grounded theory are used to identify emergent themes in interviews with 10 undergraduate civil engineering students who experienced GeoExplorer in their required geotechnical engineering courses. Our preliminary findings indicate that the GeoExplorer activity was perceived by students as a novel learning experience, particularly welcomed in a time of remote learning, that motivates them to engage more with content and creates individualized hands-on experiences. Students describe how the activity affects their perceived confidence, often gendered, regarding their ability to perform civil engineering fieldwork. Further analyses of these findings may shed light on the ways in which mixed reality learning environments support equitable learning opportunities for all students.  more » « less
Award ID(s):
1915247
NSF-PAR ID:
10359205
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
2021 IEEE Frontiers in Education Conference (FIE)
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Work-in-Progress Research paper focuses on digital game-based learning (DGBL), which refers to the use of a virtual environment to support students’ learning. In this exploratory study, we examine how students engage with GeoExplorer, a digital game-based learning environment that simulates Cone-Penetration Testing (CPT), an on-site test used in geotechnical engineering to investigate soil properties that students typically don’t have access to. In GeoExplorer’s CPT activity, students participate in a virtual internship in which they examine several sites with varied types of soil. This paper investigates DGBL environments by leveraging Self-Determination Theory (SDT) to ask the following research questions: (1) How do "freedom" and autonomy within GeoExplorer encourage students’ new emergent learning strategies? and (2) How do emergent learning strategies in GeoExplorer support students’ confidence as they self-guide their learning? Ten open-ended semi-structured interviews were performed with civil engineering students from three U.S.-based institutions. The data are analyzed using narrative analysis and a grounded theory approach. Our preliminary findings indicate that, while GeoExplorer is intended as a complement to in-person learning, it serves both as a complement and supplement to the online learning that helps to engage students during the pandemic. Students share that a felt sense of "freedom" within GeoExplorer encourages them to engage in different emergent learning strategies, such as repetition and trial and error. Students also describe that these emergent learning strategies promote knowledge retention and understanding, and further support their confidence in performing CPT. Our preliminary findings provide opportunities for students to practice autonomy and develop competency – two out of three basic psychological needs in SDT – in their educational processes. 
    more » « less
  2. The building industry has a major impact on the US economy and accounts for: $1 trillion in annual spending; 40% of the nation’s primary energy use; and 9 million jobs. Despite its massive impact, the industry has been criticized for poor productivity compared with other industries and billions of dollars in annual waste because of poor interoperability. Furthermore, the industry has been approaching a “labor cliff”: there are not enough new individuals entering the industry to offset the vacancies left by an aging, retiring workforce. To remain effective, this critical industry will need to do better with less. In order to prepare civil engineering students for careers in this industry, educators have aimed to replicate the processes associated with real-world projects through design/build educational activities like the Department of Energy’s (DOE) Solar Decathlon, Sacramento Municipal Utility District’s (SMUD) Tiny House Competition, and DOE’s Challenge Home Competition. These learning experiences help situate civil engineering concepts in an authentic learning environment. Unfortunately, not all universities have the financial resources necessary to fund this type of hands-on project. Technology has the potential to mitigate some of these inequities. Thus, the multi-faceted objective of this project is to: develop mixed reality (MR) technology aimed at sufficiently replicating physical design and construction learning environments to enable access to students at institutions without sufficient resources; and assess the impact of a MR-facilitated cyberlearning environment on promoting cognitive-, affective-, and skill-based learning that occurs during traditional (in-persona) design and construction activities. This research will explore a fundamental question: Can MR technology enable educators to simulate physical design and construction activities at low costs to enable students at all institutions to gain exposure to these types of hands-on learning environments? In order to address this question, we employ an iterative development approach according to Human Centered Design principles to support learning according to the Carnegie Foundation’s Three Apprenticeships Model (i.e., learning related to “Head”, “Hand”, and “Heart”). In order to achieve these aims, the research team uses MR technology (i.e., a Microsoft HoloLens®) to understand the extent to which this mode of education allows students to demonstrate knowledge similar to that which is gained through physical design and construction learning environments. This paper will presents highlights from the first year of this project. 
    more » « less
  3. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less
  4. A fully-integrated mixed reality game system called multiphysics enriched mixed reality for integrated geotechnical education (MERGE) is developed to improve student education in the context of geotechnical engineering. This work allows students to learn the design of geothermal pile in a more inclusive way while playing a game and gain an "integrated geotechnical learning experience". Several mini games are designed for students to enhance the geotechnical knowledge. Players can earn points and update their appearance by playing these mini games, which stimulates their interests in geotechnical engineering. By providing students with visualization, collaboration, and simulation tools, we hope to promote the understanding of geotechnical experiments. Based on the laboratory results, numerical experiments are conducted to help students understand the geotechnical application. The leveraging mixed reality technology offers an opportunity for students to access advanced equipment in geotechnical experiments. The main contribution of this work is a discussion of the educational technology and processes behind implementing a mixed reality educational game. We provide developmental insights and educational background to inform researchers who seek to develop similar games. 
    more » « less
  5. null (Ed.)
    Like many natural sciences, a critical component of archaeology is field work. Despite its importance, field opportunities are available to few students for financial and logistical reasons. With little exposure to archaeological research, fewer students are entering archaeology, particularly minority students (Smith 2004; Wilson 2015). To counter these trends, we have leveraged the ongoing revolution in consumer electronics for the current, digitally-empowered generation by creating a game-based, virtual archaeology curriculum to 1) teach foundational principles of a discipline that is challenging to present in a traditional classroom by using sensory and cognitive immersion; and, 2) allow wider access to a field science that has previously been limited to only select students. Virtual reality (VR) is computer technology that creates a simulated three-dimensional world for a user to experience in a bodily way, thereby transforming data analysis into a sensory and cognitive experience. Using a widely-available, room-scale, VR platform, we have created a virtual archaeological excavation experience that conveys two overarching classroom objectives: 1) teach the physical methods of archaeological excavation by providing the setting and tools for a student to actively engage in field work; and, 2) teach archaeological concepts using a scientific approach to problem solving by couching them within a role-playing game. The current prototype was developed with the HTC Vive VR platform, which includes a headset, hand controllers, and two base stations to track the position and orientation of the user’s head and hands within a 4x4 meter area. Environments were developed using Unreal Engine 4, an open source gaming engine, to maximize usability for different audiences, learning objectives, and skill levels. Given the inherent fun of games and widespread interest in archaeology and cultural heritage, the results of this research are adaptable and applicable to learners of all ages in formal and informal educational settings. 
    more » « less