skip to main content


Title: Major processes of the dissolved cobalt cycle in the North and equatorial Pacific Ocean
Abstract. Over the past decade, the GEOTRACES and wider trace metalgeochemical community has made substantial contributions towardsconstraining the marine cobalt (Co) cycle and its major biogeochemicalprocesses. However, few Co speciation studies have been conducted in theNorth and equatorial Pacific Ocean, a vast portion of the world's oceans byvolume and an important end-member of deep thermohaline circulation.Dissolved Co (dCo) samples, including total dissolved and labile Co, weremeasured at-sea during the GEOTRACES Pacific Meridional Transect (GP15) expedition along the 152∘ W longitudinal from 56∘ N to20∘ S. Along this transect, upper-ocean dCo (σ0<26) was linearly correlated with dissolved phosphate (slope = 82±3, µmol : mol) due to phytoplankton uptake and remineralization.As depth increased, dCo concentrations became increasingly decoupled fromphosphate concentrations due to co-scavenging with manganese oxide particlesin the mesopelagic. The transect revealed an organically bound coastalsource of dCo to the Alaskan Stream associated with low-salinity waters. Anintermediate-depth hydrothermal flux of dCo was observed off the Hawaiiancoast at the Loihi Seamount, and the elevated dCo was correlated withpotential xs3He at and above the vent site; however, the Loihi Seamountlikely did not represent a major source of Co to the Pacific basin. Elevatedconcentrations of dCo within oxygen minimum zones (OMZs) in the equatorialNorth and South Pacific were consistent with the suppression of oxidativescavenging, and we estimate that future deoxygenation could increase the OMZdCo inventory by 18 % to 36 % over the next century. In Pacific Deep Water(PDW), a fraction of elevated ligand-bound dCo appeared protected fromscavenging by the high biogenic particle flux in the North Pacific basin.This finding is counter to previous expectations of low dCo concentrationsin the deep Pacific due to scavenging over thermohaline circulation.Compared to a Co global biogeochemical model, the observed transectdisplayed more extreme inventories and fluxes of dCo than predicted by themodel, suggesting a highly dynamic Pacific Co cycle.  more » « less
Award ID(s):
1736601 2048774 1737167 1736906
NSF-PAR ID:
10359231
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Biogeosciences
Volume:
19
Issue:
9
ISSN:
1726-4189
Page Range / eLocation ID:
2365 to 2395
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become  ∼  10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of  ∼  400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone. 
    more » « less
  2. Abstract. Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.

     
    more » « less
  3. Abstract

    The North Pacific has played an important role in ongoing discussions on the origin of the global correlation between oceanic dissolved Zn and Si, while data in the North Pacific have remained sparse. Here, we present dissolved Zn and δ66Zn data from the US GEOTRACES GP15 meridional transect along 152°W from Alaska to the South Pacific. In the south (<20°N) Zn and Si exhibit a tight linear correlation reflecting strong Southern Ocean influence, while in the north (>20°N) an excess of Zn relative to Si in upper and intermediate waters is due to regeneration of Zn together with PO4. Using a mechanistic model, we show that reversible scavenging is required as an additional process transferring Zn from the upper to the deep ocean, explaining the deep Zn maximum below the PO4maximum. This mechanism applied for reversible scavenging also provides an explanation for the observed isotope distribution: (a) fractionation during ligand binding and subsequent removal of residual heavy Zn in the upper ocean, drives the upper ocean toward lower δ66Zn, while (b) release of heavy Zn then coincides with the PO4maximum where carrier particles regenerate, causing a mid‐depth δ66Zn maximum. In the upper ocean, seasonal physical stratification is an additional important process influencing shallow δ66Zn signals. At the global scale, this mechanism invoking fractionation during ligand binding coupled with reversible scavenging offers a global explanation for isotopically light Zn at shallow depths and corresponding elevated mid‐depth δ66Zn signals, seen dominantly in ocean regions away from strong Southern Ocean control.

     
    more » « less
  4. Abstract

    Scarce dissolved surface ocean concentrations of the essential algal micronutrient zinc suggest that Zn may influence the growth of phytoplankton such as diatoms, which are major contributors to marine primary productivity. However, the specific mechanisms by which diatoms acclimate to Zn deficiency are poorly understood. Using global proteomic analysis, we identified two proteins (ZCRP-A/B, Zn/Co Responsive Protein A/B) among four diatom species that became abundant under Zn/Co limitation. Characterization using reverse genetic techniques and homology data suggests putative Zn/Co chaperone and membrane-bound transport complex component roles for ZCRP-A (a COG0523 domain protein) and ZCRP-B, respectively. Metaproteomic detection of ZCRPs along a Pacific Ocean transect revealed increased abundances at the surface (<200 m) where dZn and dCo were scarcest, implying Zn nutritional stress in marine algae is more prevalent than previously recognized. These results demonstrate multiple adaptive responses to Zn scarcity in marine diatoms that are deployed in low Zn regions of the Pacific Ocean.

     
    more » « less
  5. Abstract

    A major surface circulation feature of the Arctic Ocean is the Transpolar Drift (TPD), a current that transports river‐influenced shelf water from the Laptev and East Siberian Seas toward the center of the basin and Fram Strait. In 2015, the international GEOTRACES program included a high‐resolution pan‐Arctic survey of carbon, nutrients, and a suite of trace elements and isotopes (TEIs). The cruises bisected the TPD at two locations in the central basin, which were defined by maxima in meteoric water and dissolved organic carbon concentrations that spanned 600 km horizontally and ~25–50 m vertically. Dissolved TEIs such as Fe, Co, Ni, Cu, Hg, Nd, and Th, which are generally particle‐reactive but can be complexed by organic matter, were observed at concentrations much higher than expected for the open ocean setting. Other trace element concentrations such as Al, V, Ga, and Pb were lower than expected due to scavenging over the productive East Siberian and Laptev shelf seas. Using a combination of radionuclide tracers and ice drift modeling, the transport rate for the core of the TPD was estimated at 0.9 ± 0.4 Sv (106 m3 s−1). This rate was used to derive the mass flux for TEIs that were enriched in the TPD, revealing the importance of lateral transport in supplying materials beneath the ice to the central Arctic Ocean and potentially to the North Atlantic Ocean via Fram Strait. Continued intensification of the Arctic hydrologic cycle and permafrost degradation will likely lead to an increase in the flux of TEIs into the Arctic Ocean.

     
    more » « less