skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast and precise application code analysis using a partial library
Long analysis times are a key bottleneck for the widespread adoption of whole-program static analysis tools. Fortunately, however, a user is often only interested in finding errors in the application code, which constitutes a small fraction of the whole program. Current application-focused analysis tools overapproximate the effect of the library and hence reduce the precision of the analysis results. However, empirical studies have shown that users have high expectations on precision and will ignore tool results that don't meet these expectations. In this paper, we introduce the first tool QueryMax that significantly speeds up an application code analysis without dropping any precision. QueryMax acts as a pre-processor to an existing analysis tool to select a partial library that is most relevant to the analysis queries in the application code. The selected partial library plus the application is given as input to the existing static analysis tool, with the remaining library pointers treated as the bottom element in the abstract domain. This achieves a significant speedup over a whole-program analysis, at the cost of a few lost errors, and with no loss in precision. We instantiate and run experiments on QueryMax for a cast-check analysis and a null-pointer analysis. For a particular configuration, QueryMax enables these two analyses to achieve, relative to a whole-program analysis, an average recall of 87%, a precision of 100% and a geometric mean speedup of 10x.  more » « less
Award ID(s):
1823360
PAR ID:
10359280
Author(s) / Creator(s):
;
Date Published:
Journal Name:
44th International Conference on Software Engineering (ICSE ’22)
Page Range / eLocation ID:
934 to 945
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aldrich, Jonathan; Salvaneschi, Guido (Ed.)
    Timing channel attacks are emerging as real-world threats to computer security. In cryptographic systems, an effective countermeasure against timing attacks is the constant-time programming discipline. However, strictly enforcing the discipline manually is both time-consuming and error-prone. While various tools exist for analyzing/verifying constant-time programs, they sacrifice at least one feature among precision, soundness and efficiency. In this paper, we build CtChecker, a sound static analysis for constant-time programming. Under the hood, CtChecker uses a static information flow analysis to identify violations of constant-time discipline. Despite the common wisdom that sound, static information flow analysis lacks precision for real-world applications, we show that by enabling field-sensitivity, context-sensitivity and partial flow-sensitivity, CtChecker reports fewer false positives compared with existing sound tools. Evaluation on real-world cryptographic systems shows that CtChecker analyzes 24K lines of source code in under one minute. Moreover, CtChecker reveals that some repaired code generated by program rewriters supposedly remove timing channels are still not constant-time. 
    more » « less
  2. Extensive research has been conducted to explore cryptographic API misuse in Java. However, despite the tremendous popularity of the Python language, uncovering similar issues has not been fully explored. The current static code analysis tools for Python are unable to scan the increasing complexity of the source code. This limitation decreases the analysis depth, resulting in more undetected cryptographic misuses. In this research, we propose Cryptolation, a Static Code Analysis (SCA) tool that provides security guarantees for complex Python cryptographic code. Most existing analysis tools for Python solely focus on specific Frameworks such as Django or Flask. However, using a SCA approach, Cryptolation focuses on the language and not any framework. Cryptolation performs an inter-procedural data-flow analysis to handle many Python language features through variable inference (statically predicting what the variable value is) and SCA. Cryptolation covers 59 Python cryptographic modules and can identify 18 potential cryptographic misuses that involve complex language features. In this paper, we also provide a comprehensive analysis and a state-of-the-art benchmark for understanding the Python cryptographic Application Program Interface (API) misuses and their detection. Our state-of-the-art benchmark PyCryptoBench includes 1,836 Python cryptographic test cases that cover both 18 cryptographic rules and five language features. PyCryptoBench also provides a framework for evaluating and comparing different cryptographic scanners for Python. To evaluate the performance of our proposed cryptographic Python scanner, we evaluated Cryptolation against three other state-of-the-art tools: Bandit, Semgrep, and Dlint. We evaluated these four tools using our benchmark PyCryptoBench and manual evaluation of (four Top-Ranked and 939 Un-Ranked) real-world projects. Our results reveal that, overall, Cryptolation achieved the highest precision throughout our testing; and the highest accuracy on our benchmark. Cryptolation had 100% precision on PyCryptoBench, and the highest precision on real-world projects. 
    more » « less
  3. Aldrich, Jonathan; Silva, Alexandra (Ed.)
    Many important security properties can be formulated in terms of flows of tainted data, and improved taint analysis tools to prevent such flows are of critical need. Most existing taint analyses use whole-program static analysis, leading to scalability challenges. Type-based checking is a promising alternative, as it enables modular and incremental checking for fast performance. However, type-based approaches have not been widely adopted in practice, due to challenges with false positives and annotating existing codebases. In this paper, we present a new approach to type-based checking of taint properties that addresses these challenges, based on two key techniques. First, we present a new type-based tainting checker with significantly reduced false positives, via more practical handling of third-party libraries and other language constructs. Second, we present a novel technique to automatically infer tainting type qualifiers for existing code. Our technique supports inference of generic type argument annotations, crucial for tainting properties. We implemented our techniques in a tool TaintTyper and evaluated it on real-world benchmarks. TaintTyper exceeds the recall of a state-of-the-art whole-program taint analyzer, with comparable precision, and 2.93X-22.9X faster checking time. Further, TaintTyper infers annotations comparable to those written by hand, suitable for insertion into source code. TaintTyper is a promising new approach to efficient and practical taint checking. 
    more » « less
  4. A superoptimizing compiler—-one that performs a meaningful search of the program space as part of the optimization process—-can find optimization opportunities that are missed by even the best existing optimizing compilers. We created Minotaur: a superoptimizer for LLVM that uses program synthesis to improve its code generation, focusing on integer and floating-point SIMD code. On an Intel Cascade Lake processor, Minotaur achieves an average speedup of 7.3% on the GNU Multiple Precision library (GMP)’s benchmark suite, with a maximum speedup of 13%. On SPEC CPU 2017, our superoptimizer produces an average speedup of 1.5%, with a maximum speedup of 4.5% for 638.imagick. Every optimization produced by Minotaur has been formally verified, and several optimizations that it has discovered have been implemented in LLVM as a result of our work. 
    more » « less
  5. Mobile application security has been one of the major areas of security research in the last decade. Numerous application analysis tools have been proposed in response to malicious, curious, or vulnerable apps. However, existing tools, and specifically, static analysis tools, trade soundness of the analysis for precision and performance, and are hence soundy. Unfortunately, the specific unsound choices or flaws in the design of these tools are often not known or well-documented, leading to a misplaced confidence among researchers, developers, and users. This paper proposes the Mutation-based soundness evaluation (µSE) framework, which systematically evaluates Android static analysis tools to discover, document, and fix, flaws, by leveraging the well-founded practice of mutation analysis. We implement µSE as a semi-automated framework, and apply it to a set of prominent Android static analysis tools that detect private data leaks in apps. As the result of an in-depth analysis of one of the major tools, we discover 13 undocumented flaws. More importantly, we discover that all 13 flaws propagate to tools that inherit the flawed tool. We successfully fix one of the flaws in cooperation with the tool developers. Our results motivate the urgent need for systematic discovery and documentation of unsound choices in soundy tools, and demonstrate the opportunities in leveraging mutation testing in achieving this goal. 
    more » « less