skip to main content


Title: Formation of Low-mass Black Holes and Single Millisecond Pulsars in Globular Clusters
Abstract Close encounters between neutron stars and main-sequence stars occur in globular clusters and may lead to various outcomes. Here we study encounters resulting in the tidal disruption of the star. Using N -body models, we predict the typical stellar masses in these disruptions and the dependence of the event rate on the host cluster properties. We find that tidal disruption events occur most frequently in core-collapsed globular clusters and that roughly 25% of the disrupted stars are merger products (i.e., blue straggler stars). Using hydrodynamic simulations, we model the tidal disruptions themselves (over timescales of days) to determine the mass bound to the neutron star and the properties of the accretion disks formed. In general, we find roughly 80%–90% of the initial stellar mass becomes bound to the neutron star following disruption. Additionally, we find that neutron stars receive impulsive kicks of up to about 20 km s −1 as a result of the asymmetry of unbound ejecta; these kicks place these neutron stars on elongated orbits within their host cluster, with apocenter distances well outside the cluster core. Finally, we model the evolution of the (hypercritical) accretion disks on longer timescales (days to years after disruption) to estimate the accretion rate onto the neutron stars and accompanying spin-up. As long as ≳1% of the bound mass accretes onto the neutron star, millisecond spin periods can be attained. We argue the growing numbers of isolated millisecond pulsars observed in globular clusters may have formed, at least in part, through this mechanism. In the case of significant mass growth, some of these neutron stars may collapse to form low-mass (≲3 M ⊙ ) black holes.  more » « less
Award ID(s):
2108624 2001751 2020265
NSF-PAR ID:
10359303
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
934
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent analyses have shown that close encounters between stars and stellar black holes occur frequently in dense star clusters. Depending upon the distance at closest approach, these interactions can lead to dissipating encounters such as tidal captures and disruptions, or direct physical collisions, all of which may be accompanied by bright electromagnetic transients. In this study, we perform a wide range of hydrodynamic simulations of close encounters between black holes and main-sequence stars that collectively cover the parameter space of interest, and we identify and classify the various possible outcomes. In the case of nearly head-on collisions, the star is completely disrupted with roughly half of the stellar material becoming bound to the black hole. For more distant encounters near the classical tidal-disruption radius, the star is only partially disrupted on the first pericenter passage. Depending upon the interaction details, the partially disrupted stellar remnant may be tidally captured by the black hole or become unbound (in some cases, receiving a sufficiently large impulsive kick from asymmetric mass loss to be ejected from its host cluster). In the former case, the star will undergo additional pericenter passages before ultimately being disrupted fully. Based on the properties of the material bound to the black hole at the end of our simulations (in particular, the total bound mass and angular momentum), we comment upon the expected accretion process and associated electromagnetic signatures that are likely to result. 
    more » « less
  2. null (Ed.)
    ABSTRACT In dense star clusters, such as globular and open clusters, dynamical interactions between stars and black holes (BHs) can be extremely frequent, leading to various astrophysical transients. Close encounters between a star and a stellar mass BH make it possible for the star to be tidally disrupted by the BH. Due to the relative low mass of the BH and the small cross-section of the tidal disruption event (TDE) for cases with high penetration, disruptions caused by close encounters are usually partial disruptions. The existence of the remnant stellar core and its non-negligible mass compared to the stellar mass BH alters the accretion process significantly. We study this problem with SPH simulations using the code Phantom, with the inclusion of radiation pressure, which is important for small mass BHs. Additionally, we develop a new, more general method of computing the fallback rate which does not rely on any approximation. Our study shows that the powerlaw slope of the fallback rate has a strong dependence on the mass of the BH in the stellar mass BH regime. Furthermore, in this regime, self-gravity of the fallback stream and local instabilities become more significant, and cause the disrupted material to collapse into small clumps before returning to the BH. This results in an abrupt increase of the fallback rate, which can significantly deviate from a powerlaw. Our results will help in the identification of TDEs by stellar mass BHs in dense clusters. 
    more » « less
  3. Abstract

    Close encounters between stellar-mass black holes (BHs) and stars occur frequently in dense star clusters and in the disks of active galactic nuclei. Recent studies have shown that in highly eccentric close encounters, the star can be tidally disrupted by the BH in a microtidal disruption event (microTDE), resulting in rapid mass accretion and possibly bright electromagnetic signatures. Here we consider a scenario in which the star might approach the stellar-mass BH in a gradual, nearly circular inspiral, under the influence of dynamical friction in a circum-binary gas disk or three-body interactions in a star cluster. We perform hydrodynamics simulations of this scenario using the smoothed particle hydrodynamics codePHANTOM. We find that under certain circumstances (for initial eccentricitye0≳ 0.4 and penetration factorβ= 1, ore0< 0.4 andβ≲ 0.67), the mass of the star is slowly stripped away by the BH. We call this gradual tidal disruption a “tidal-peeling event.” Additionally, we discover that some low-eccentricity microTDEs (e0< 0.4 andβ= 1) are a new form of fast luminous transients similar to parabolic microTDEs. Depending on the initial distance and eccentricity of the encounter, these low-eccentricity microTDEs might exhibit significant accretion rates and orbital evolution distinct from those of a typical (eccentric) microTDE.

     
    more » « less
  4. Abstract

    Globular clusters (GCs) are particularly efficient at forming millisecond pulsars. Among these pulsars, about half lack a companion star, a significantly higher fraction than in the Galactic field. This fraction increases further in some of the densest GCs, especially those that have undergone core collapse, suggesting that dynamical interaction processes play a key role. For the first time, we createN-body models that reproduce the ratio of single-to-binary pulsars in Milky Way–like GCs. We focus especially on NGC 6752, a typical core-collapsed cluster with many observed millisecond pulsars. Previous studies suggested that an increased rate of neutron star binary disruption in the densest clusters could explain the overabundance of single pulsars in these systems. Here, we demonstrate that binary disruption is ineffective and instead we propose that two additional dynamical processes play dominant roles: (1) tidal disruption of main-sequence stars by neutron stars and (2) gravitational collapse of heavy white dwarf binary merger remnants. Neutron stars formed through these processes may also be associated with fast radio bursts similar to those observed recently in an extragalactic GC.

     
    more » « less
  5. ABSTRACT

    Globular clusters are prone to lose stars while moving around the Milky Way. These stars escape the clusters and are distributed throughout extended envelopes or tidal tails. However, such extra-tidal structures are not observed in all globular clusters, and yet there are no structural or dynamical parameters that can predict their presence or absence. NGC 6864 is an outer halo globular cluster with reported no observed tidal tails. We used Dark Energy Camera photometry reaching ∼4 mag underneath its main-sequence turnoff to confidently detect an extra-tidal envelope, and stellar debris spread across the cluster outskirts. These features emerged once robust field star filtering techniques were applied to the fainter end of the observed cluster main sequence. NGC 6864 is associated to the Gaia-Enceladus dwarf galaxy, among others 28 globular clusters. Up-to-date, nearly 64${{\ \rm per\,cent}}$ of them have been targeted looking for tidal tails and most of them have been confirmed to exhibit tidal tails. Thus, the present outcomes allow us to speculate on the possibility that Gaia-Enceladus globular clusters share a common pattern of mass loss by tidal disruption.

     
    more » « less