skip to main content


Title: Tephra Fusion 2022 workshop focused on best practices in tephra data recommends innovative computer solutions to build databases
A series of international workshops held in 2014, 2017, 2019, and 2022 focused on improving tephra studies from field collection through publication and encouraging FAIR (findable, accessible, interoperable, reusable) data practices for tephra data and metadata. Two consensus needs for tephra studies emerged from the 2014 and 2017 workshops: (a) standardization of tephra field data collection, geochemical analysis, correlation, and data reporting, and (b) development of next generation computer tools and databases to facilitate information access across multidisciplinary communities. To achieve (a), we developed a series of recommendations for best practices in tephra studies, from sample collection through analysis and data reporting (https://zenodo.org/record/3866266). A 4-part virtual workshop series (https://tephrochronology.org/cot/Tephra2022/) was held in February and March, 2022, to update the tephra community on these developments, to get community feedback, to learn of unmet needs, and to plan a future roadmap for open and FAIR tephra data. More than 230 people from 25 nations registered for the workshop series. The community strongly emphasized the need for better computer systems, including physical infrastructure (repositories and servers), digital infrastructure (software and tools) and human infrastructure (people, training, and professional assistance), to store, manage and serve global tephra datasets. Some desired attributes of improved computer systems include: 1) user friendliness 2) ability to easily ingest multiparameter tephra data (using best practice recommended data fields); 3) interoperability with existing data repositories; 4) development of tool add-ons (plotting and statistics); 5) improved searchability 6) development of a tephra portal with access to distributed data systems, and 7) commitments to long-term support from funding agencies, publishers and the cyberinfrastructure community.  more » « less
Award ID(s):
1928341
NSF-PAR ID:
10359379
Author(s) / Creator(s):
Date Published:
Journal Name:
EarthCube Annual Meeting 2022
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tephra is a unique volcanic product with an unparalleled role in understanding past eruptions, the long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, extremely high-resolution time-stratigraphic markers across a range of sedimentary settings and are used by many disciplines (e.g. volcanology, seismotectonics, climate science, archaeology, ecology, public health, ash impact assessment). The interdisciplinary shift in tephra studies over the last two decades is challenged by the lack of standardization that often prevents comparison amongst various regions and across disciplines. To address this challenge, the global tephra community has united through a series of workshops to establish best practice recommendations for tephra studies, including sample collection, analysis and data reporting (https://doi.org/10.5281/zenodo.3866266). This new standardized framework is being incorporated into digital tools and data repositories and supports FAIR (findable, accessible, interoperable and reusable) data principles. Widespread adoption will facilitate consistent tephra documentation and parametrization, foster interdisciplinary communication and improve the effectiveness of data sharing among diverse communities of researchers. Here we report on recent implementations of the best-practice recommendations including: 1) a set of templates for samples, methods documentation, and data reporting, 2) a tephra module in the StraboSpot field app (https://strabospot.org), 3) implementations at SESAR and EarthChem, including a tephra community portal (https://earthchem.org/communities/tephra/), 4) implementation in the Sparrow laboratory data system (https://sparrow-data.org/), and 5) a new manuscript supporting the framework. Data linking is facilitated by extensive use of unique identifiers including ORCIDs for people, IGSNs for field sites and samples; DOIs for publications, data, and methods; and Smithsonian IDs for volcanoes and eruptions. These developments allow users to follow simple workflows to archive data and facilitate faster access to key research by secondary users. 
    more » « less
  2. An implementation of the Sparrow data system (https://sparrow-data.org) is currently being developed to support laboratory workflows for sample preparation, geochemical analysis, and SEM imaging in support of tephra research. Tephra, consisting of fragmental material ejected from volcanoes, has a multidisciplinary array of applications from volcanology to geochronology, archaeology, environmental change, and more. The international tephra research community has developed a comprehensive set of recommendations for data and metadata collection and reporting (https://doi.org/10.5281/zenodo.3866266) as part of a broader effort to adopt FAIR practices. Implementations of these recommendations now exist for field data via StraboSpot (https://strabospot.org/files/StraboSpotTephraHelp.pdf) and for samples, analytical methods, and geochemistry via SESAR and EarthChem (https://earthchem.org/communities/tephra/). Implementing these recommended practices in Sparrow helps to (1) cover laboratory workflows between field sample collection and project data archiving and (2) address a key researcher pain point. As re-emphasized by participants in the Tephra Fusion 2022 workshop earlier this year (Wallace et al., this meeting), the huge workload currently needed to capture and organize data and metadata in preparation for archiving in community data repositories is a major obstacle to achieving FAIR practices. By capturing this information on the fly during laboratory workflows and integrating it together in a single data system, this challenge may be overcome. We are implementing the tephra community recommendations as extensions to Sparrow’s core database schema. Data import pipelines and user interfaces to streamline metadata capture are also being developed. In the longer term, we aim to achieve interoperability with an ecosystem of tools and repositories like StraboSpot, SESAR, EarthChem, and Throughput. The results of these developments will be applicable not just to tephra but also to other research areas which utilize similar laboratory and analytical methods - e.g. sedimentology, mineralogy, and petrology. 
    more » « less
  3. Tephra is a unique volcanic product that plays an unparalleled role in understanding past eruptions, the long-term behavior of volcanoes, and the effects of volcanism on climate and the environment. Tephra deposits also provide spatially widespread, extremely high-resolution time-stratigraphic markers across a range of sedimentary settings and are used by many disciplines (e.g. volcanology, seismotectonics, climate science, archaeology, ecology, public health and ash impact assessment). In the last two decades, tephra studies have become more interdisciplinary in nature but are challenged by a lack of standardization that often prevents comparison amongst various regions and across disciplines. To address this challenge, the global tephra community has come together through a series of workshops to establish best practice recommendations for tephra studies from sample collection through analysis and data reporting. This new standardized framework will facilitate consistent tephra documentation and parametrization, foster interdisciplinary communication, and improve effectiveness of data sharing among diverse communities of researchers. One specific goal is to use the best practice guidelines to inform digital tool and data repository development. Here we report on 1) a new set of templates for tephra sample documentation, geochemical method documentation and data reporting using recommended best- practice data and metadata fields, 2) a new tephra module added to StraboSpot, an open source geologic mapping and data- recording multi-platform software application, and 3) new implementations and cross-mapping of metadata requirements at SESAR (System for Earth Sample Registration) and EarthChem. Addition of tephra-specific fields to StraboSpot enables users to consistently collect and report essential tephra data in the field which is then automatically saved to an online data repository. A new tephra portal on the EarthChem website will allow users to follow simple workflows to register tephra samples at SESAR and submit microanalytical data to EarthChem. 
    more » « less
  4. Strategically moving communities and infrastructure - including homes and businesses - away from environmentally high-risk areas, such as vulnerable coastal regions, has been referred to as managed retreat. Of all the ways humans respond to climate-related hazards, managed retreat has been one of the most controversial due to the difficulty inherent in identifying when, to where, by whom, and the processes by which such movement should take place. To understand and respond to the unique challenges associated with managed retreat, the Gulf Research Program of the National Academies of Sciences, Engineering, and Medicine sponsored a committee of experts to provide in-depth analysis and identify short- and long-term next steps for Gulf Coast communities that may need to relocate. The committee convened a series of three public workshops in the Gulf Coast region to gather information about on policy and practice considerations, research and data needs, and community engagement strategies. The workshops focused on elevating the voices of communities and individuals contemplating, resisting, undertaking, or facing barriers to relocation (including systemic issues such as structural racism), as well as individuals who have resettled and communities that have received such individuals. Each workshop included community testimonials and panels of local decision makers and experts discussing study-relevant processes and obstacles faced by communities. The first workshop was held in two parts in Houston and Port Arthur, Texas; the second workshop was held in St. Petersburg, Florida; and the third workshop was held in two parts in Thibodaux and Houma, Louisiana. This Proceedings of a Workshop-in Brief recounts the second workshop, held in July 2022 in St. Petersburg, Florida. 
    more » « less
  5. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.)
    https://pressbooks.lib.vt.edu/alaskanative/ At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less