skip to main content


Title: Concordance: In-flight Calibration of X-Ray Telescopes without Absolute References
Abstract We describe a process for cross-calibrating the effective areas of X-ray telescopes that observe common targets. The targets are not assumed to be “standard candles” in the classic sense, in that we assume that the source fluxes have well-defined, but a priori unknown values. Using a technique developed by Chen et al. that involves a statistical method called shrinkage estimation , we determine effective area correction factors for each instrument that bring estimated fluxes into the best agreement, consistent with prior knowledge of their effective areas. We expand the technique to allow unique priors on systematic uncertainties in effective areas for each X-ray astronomy instrument and to allow correlations between effective areas in different energy bands. We demonstrate the method with several data sets from various X-ray telescopes.  more » « less
Award ID(s):
1811083 2113397
NSF-PAR ID:
10359558
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
162
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The response of imaging atmospheric Cherenkov telescopes to incident γ -ray-initiated showers in the atmosphere changes as the telescopes age due to exposure to light and weather. These aging processes affect the reconstructed energies of the events and γ -ray fluxes. Aims. This work discusses the implementation of signal calibration methods for the Very Energetic Radiation Imaging Telescope Array System (VERITAS) to account for changes in the optical throughput and detector performance over time. Methods. The total throughput of a Cherenkov telescope is the product of camera-dependent factors, such as the photomultiplier tube gains and their quantum efficiencies, and the mirror reflectivity and Winston cone response to incoming radiation. This document summarizes different methods to determine how the camera gains and mirror reflectivity have evolved over time and how we can calibrate this changing throughput in reconstruction pipelines for imaging atmospheric Cherenkov telescopes. The implementation is validated against seven years of observations with the VERITAS telescopes of the Crab Nebula, which is a reference object in very-high-energy astronomy. Results. Regular optical throughput monitoring and the corresponding signal calibrations are found to be critical for the reconstruction of extensive air shower images. The proposed implementation is applied as a correction to the signals of the photomultiplier tubes in the telescope simulation to produce fine-tuned instrument response functions. This method is shown to be effective for calibrating the acquired γ -ray data and for recovering the correct energy of the events and photon fluxes. At the same time, it keeps the computational effort of generating Monte Carlo simulations for instrument response functions affordably low. 
    more » « less
  2. Abstract Neutrinos offer a unique window to the distant, high-energy universe. Several next-generation instruments are being designed and proposed to characterize the flux of TeV–EeV neutrinos. The projected physics reach of the detectors is often quantified with simulation studies. However, a complete Monte Carlo estimate of detector performance is costly from a computational perspective, restricting the number of detector configurations considered when designing the instruments. In this paper, we present a new Python-based software framework, toise , which forecasts the performance of a high-energy neutrino detector using parameterizations of the detector performance, such as the effective areas, angular and energy resolutions, etc. The framework can be used to forecast performance of a variety of physics analyses, including sensitivities to diffuse fluxes of neutrinos and sensitivity to both transient and steady state point sources. This parameterized approach reduces the need for extensive simulation studies in order to estimate detector performance, and allows the user to study the influence of single performance metrics, like the angular resolution, in isolation. The framework is designed to allow for multiple detector components, each with different responses and exposure times, and supports paramterization of both optical- and radio-Cherenkov (Askaryan) neutrino telescopes. In the paper, we describe the mathematical concepts behind toise and introduce the reader to the use of the framework. 
    more » « less
  3. Proteins are the workhorses of the cell. The shape that a protein molecule adopts enables it to carry out its role. However, a protein’s shape, or 'conformation', is not static. Instead, a protein can shift between different conformations. This is particularly true for enzymes – the proteins that catalyze chemical reactions. The region of an enzyme where the chemical reaction happens, known as the active site, often has to change its conformation to allow catalysis to proceed. Changes in temperature can also make a protein shift between alternative conformations. Understanding how a protein shifts between conformations gives insight into how it works. A common method for studying protein conformation is X-ray crystallography. This technique uses a beam of X-rays to figure out where the atoms of the protein are inside a crystal made of millions of copies of that protein. At room temperature or biological temperature, X-rays can rapidly damage the protein. Because of this, most crystal structures are determined at very low temperatures to minimize damage. But cooling to low temperatures changes the conformations that the protein adopts, and usually causes fewer conformations to be present. Keedy, Kenner, Warkentin, Woldeyes et al. have used X-ray crystallography from a very low temperature (-173°C or 100 K) to above room temperature (up to 27°C or 300 K) to explore the alternative conformations of an enzyme called cyclophilin A. These alternative conformations include those that have previously been linked to this enzyme’s activity. Starting at a low temperature, parts of the enzyme were seen to shift from having a single conformation to many conformations above a threshold temperature. Unexpectedly, different parts of the enzyme have different threshold temperatures, suggesting that there isn’t a single transition across the whole protein. Instead, it appears the way a protein’s conformation changes in response to temperature is more complex than was previously realized. This result suggests that conformations in different parts of a protein are coupled to each other in complex ways. Keedy, Kenner, Warkentin, Woldeyes et al. then performed X-ray crystallography at room temperature using an X-ray free-electron laser (XFEL). This technique can capture the protein’s structure before radiation damage occurs, and confirmed that the alternative conformations observed were not affected by radiation damage. The combination of X-ray crystallography at multiple temperatures, new analysis methods for identifying and measuring alternative conformations, and XFEL crystallography should help future studies to characterize conformational changes in other proteins. 
    more » « less
  4. ABSTRACT

    To understand the X-ray emission of active galactic nuclei (AGNs), we explored the optical-to-X-ray variation correlation of a radio-loud quasar (RLQ) SDSS J121426.52+140258.9 (hereafter J1214+1402) with multi-epoch observations by the Swift and XMM–Newton telescopes. With the historical multiband data, we found that the infrared-to-X-ray flux of RLQ J1214+1402 should not be dominated by the beamed-jet emission. The Swift optical/UV and X-ray light curves showed that J1214+1402 has two optical states, with low flux before 2014 April 8 and high flux after 2014 June 11, but has no significant X-ray variations during the time range between 2007 March 9 and 2014 August 4. This result was supported by the XMM–Newton observations in the time overlapping with Swift. Interestingly, the early XMM–Newton data prior to the Swift time present two unusual emission epochs when J1214+1402 has relatively low optical fluxes but has the brightest X-ray fluxes. The overall independence of optical-to-X-ray variation seems hard to describe by the disc–corona model. With the X-ray spectral fitting, we find that the soft X-ray excess in J1214+1402 appears only during the high optical state when the X-ray emission is at a low state. The soft X-ray excess in J1214+1402 is difficult to explain by an ionized accretion disc; instead, it may be related to the warm corona.

     
    more » « less
  5. Abstract

    Multiple solar instrument observation campaigns are increasingly popular among the solar physics and space science communities. Scientists organize high-resolution ground-based telescopes and spacecraft to study the evolution of the complex solar atmosphere and the origin of space weather. Image registration and coalignment between different instruments are vital for accurate data product comparison. We developed a Python language package for registration of ground-based high-resolution imaging data acquired by the Goode Solar Telescope (GST) to space-based full-disk continuum intensity data provided by the Solar Dynamics Observatory (SDO) with the scale-invariant feature transform method. The package also includes tools to align data sets obtained in different wavelengths and at different times utilizing the optical flow method. We present the image registration and coalignment workflow. The aliment accuracy of each alignment method is tested with the aid of radiative magnetohydrodynamics simulation data. We update the pointing information in GST data fits headers and generate GST and SDO imaging data products as science-ready four-dimensional (x,y,λ,t) data cubes.

     
    more » « less