A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.
- Award ID(s):
- 1633535
- PAR ID:
- 10359592
- Date Published:
- Journal Name:
- Functional Ecology
- ISSN:
- 0269-8463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Viruses infect all forms of life and play critical roles as agents of disease, drivers of biochemical cycles and sources of genetic diversity for their hosts. Our understanding of viral diversity derives primarily from comparisons among host species, precluding insight into how intraspecific variation in host ecology affects viral communities or how predictable viral communities are across populations. Here we test spatial, demographic and environmental hypotheses explaining viral richness and community composition across populations of common vampire bats, which occur in diverse habitats of North, Central and South America. We demonstrate marked variation in viral communities that was not consistently predicted by a null model of declining community similarity with increasing spatial or genetic distances separating populations. We also find no evidence that larger bat colonies host greater viral diversity. Instead, viral diversity follows an elevational gradient, is enriched by juvenile‐biased age structure, and declines with local anthropogenic food resources as measured by livestock density. Our results establish the value of linking the modern influx of metagenomic sequence data with comparative ecology, reveal that snapshot views of viral diversity are unlikely to be representative at the species level, and affirm existing ecological theories that link host ecology not only to single pathogen dynamics but also to viral communities.
-
Abstract Local-scale studies have shown that an overabundance of Cervidae species (deer, elk, moose) impacts forest bird communities. Through meta-analysis, we provide a generalized estimate of the overall direction and magnitude of the indirect effects overabundant cervids have on avian species. We conducted 2 distinct meta-analyses that synthesized data on 130 bird species collected from 17 publications. These analyses compared bird species’ population abundance and/or species richness at sites with overabundant cervids to sites with lower cervid abundance or without cervids. We evaluated whether the impacts of overabundant cervids are generally in the same direction (positive, negative) across avian species and locations and if effects vary in magnitude according to avian nesting location and foraging habitat. We found that where cervids were overabundant, there was a significant decrease in mean bird population abundance and species richness. Species that nest in trees, shrubs, and on the ground showed the largest decreases in abundance, as did species whose primary habitat is forest and open woodland and species that are primarily insectivores or omnivores. We did not find significant decreases in abundance for avian species that nest in cavities, whose primary habitat is grassland or scrub, nor for species that mainly eat seeds. Our results indicate that overabundant cervids, likely through their direct effects on vegetation and indirect effects on insects and forest birds, negatively impact individual bird populations and decrease overall avian species richness.more » « less
-
Abstract The relative importance of separation by distance and by environment to population genetic diversity can be conveniently tested in river networks, where these two drivers are often independently distributed over space. To evaluate the importance of dispersal and environmental conditions in shaping microbial population structures, we performed genome‐resolved metagenomic analyses of benthic
Microcoleus ‐dominated cyanobacterial mats collected in the Eel and Russian River networks (California, USA). The 64Microcoleus genomes were clustered into three species that shared >96.5% average nucleotide identity (ANI). Most mats were dominated by one strain, but minor alleles within mats were often shared, even over large spatial distances (>300 km). Within the most commonMicrocoleus species, the ANI between the dominant strains within mats decreased with increasing spatial separation. However, over shorter spatial distances (tens of kilometres), mats from different subwatersheds had lower ANI than mats from the same subwatershed, suggesting that at shorter spatial distances environmental differences between subwatersheds in factors like canopy cover, conductivity, and mean annual temperature decreases ANI. Since mats in smaller creeks had similar levels of nucleotide diversity (π ) as mats in larger downstream subwatersheds, within‐mat genetic diversity does not appear to depend on the downstream accumulation of upstream‐derived strains. The four‐gamete test and sequence length bias suggest recombination occurs between almost all strains within each species, even between populations separated by large distances or living in different habitats. Overall, our results show that, despite some isolation by distance and environmental conditions, sufficient gene‐flow occurs among cyanobacterial strains to prevent either driver from producing distinctive population structures across the watershed. -
Abstract Genetic diversity plays a key role in maintaining population viability by preventing inbreeding depression and providing the building blocks for adaptation. Understanding how genetic diversity varies across space is, therefore, of key interest in conservation and population genetics.
Here, we introduce
wingen , anr package for calculating continuous maps of genetic diversity, including nucleotide diversity, allelic richness, and heterozygosity, from standard genotypic and spatial data using a spatial moving window approach. We provide functions to account for variation in sample size across space using rarefaction, to create kriging‐interpolated maps of genetic diversity, and to mask any areas that are outside the area of interest.Tests with simulated and empirical datasets demonstrate that
wingen can successfully capture variation in genetic diversity across landscapes from both reduced‐representation and whole genome sequencing datasets. For reduced‐representation datasets,wingen 's functions can be run easily on a standard laptop computer, and we provide options for parallelization to increase the efficiency of running larger whole genome datasets.wingen provides novel and computationally tractable tools for creating informative maps of genetic diversity with applications for conservation prioritization as well as population and landscape genetic analyses.