skip to main content


Title: Assessing the Effectiveness of The LIAT College Access and Success Model (L-CAS) on Low-income Hispanic Engineering Students (Experience)
This paper assesses the effectiveness of an intervention model aimed at propelling low-income, academically talented (LIAT) engineering students in a Hispanic Serving Institution (HIS) into actions, immersing them into real-life contexts. The model, named the LIAT College Access and Success model (L-CAS), integrates elements from Lent’s Social Cognitive Career Theory and Tinto’s Departure model in a framework provided by a structured scholarship program designed to mitigate the economic hardship of students while also providing a multistage intervention plan to improve their success metrics. In this paper, we revisit the theoretical foundations of the L-CAS model and the academic setting where it was implemented to look at the data acquired throughout its application during three years on a pilot group of 92 students. We assess the model effectiveness for springing LIATS into actions leading to their success while reflecting on the results obtained so far. We also discuss opportunities for improvements and the projections for a scaled porting of the model to a campus-wide level.  more » « less
Award ID(s):
1833869
NSF-PAR ID:
10359601
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a critical need for more students with engineering and computer science majors to enter into, persist in, and graduate from four-year postsecondary institutions. Increasing the diversity of the workforce by inclusive practices in engineering and science is also a profound identified need. According to national statistics, the largest groups of underrepresented minority students in engineering and science attend U.S. public higher education institutions. Most often, a large proportion of these students come to colleges and universities with unique challenges and needs, and are more likely to be first in their family to attend college. In response to these needs, engineering education researchers and practitioners have developed, implemented and assessed interventions to provide support and help students succeed in college, particularly in their first year. These interventions typically target relatively small cohorts of students and can be managed by a small number of faculty and staff. In this paper, we report on “work in progress” research in a large-scale, first-year engineering and computer science intervention program at a public, comprehensive university using multivariate comparative statistical approaches. Large-scale intervention programs are especially relevant to minority serving institutions that prepare growing numbers of students who are first in their family to attend college and who are also under-resourced, financially. These students most often encounter academic difficulties and come to higher education with challenging experiences and backgrounds. Our studied first-year intervention program, first piloted in 2015, is now in its 5th year of implementation. Its intervention components include: (a) first-year block schedules, (b) project-based introductory engineering and computer science courses, (c) an introduction to mechanics course, which provides students with the foundation needed to succeed in a traditional physics sequence, and (d) peer-led supplemental instruction workshops for calculus, physics and chemistry courses. This intervention study responds to three research questions: (1) What role does the first-year intervention’s components play in students’ persistence in engineering and computer science majors across undergraduate program years? (2) What role do particular pedagogical and cocurricular support structures play in students’ successes? And (3) What role do various student socio-demographic and experiential factors play in the effectiveness of first-year interventions? To address these research questions and therefore determine the formative impact of the firstyear engineering and computer science program on which we are conducting research, we have collected diverse student data including grade point averages, concept inventory scores, and data from a multi-dimensional questionnaire that measures students’ use of support practices across their four to five years in their degree program, and diverse background information necessary to determine the impact of such factors on students’ persistence to degree. Background data includes students’ experiences prior to enrolling in college, their socio-demographic characteristics, and their college social capital throughout their higher education experience. For this research, we compared students who were enrolled in the first-year intervention program to those who were not enrolled in the first-year intervention. We have engaged in cross-sectional 2 data collection from students’ freshman through senior years and employed multivariate statistical analytical techniques on the collected student data. Results of these analyses were interesting and diverse. Generally, in terms of backgrounds, our research indicates that students’ parental education is positively related to their success in engineering and computer science across program years. Likewise, longitudinally (across program years), students’ college social capital predicted their academic success and persistence to degree. With regard to the study’s comparative research of the first-year intervention, our results indicate that students who were enrolled in the first-year intervention program as freshmen continued to use more support practices to assist them in academic success across their degree matriculation compared to students who were not in the first-year program. This suggests that the students continued to recognize the value of such supports as a consequence of having supports required as first-year students. In terms of students’ understanding of scientific or engineering-focused concepts, we found significant impact resulting from student support practices that were academically focused. We also found that enrolling in the first-year intervention was a significant predictor of the time that students spent preparing for classes and ultimately their grade point average, especially in STEM subjects across students’ years in college. In summary, we found that the studied first-year intervention program has longitudinal, positive impacts on students’ success as they navigate through their undergraduate experiences toward engineering and computer science degrees. 
    more » « less
  2. Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral. The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic. 
    more » « less
  3. Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral. The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic. 
    more » « less
  4. Modern 3D printing technology makes it relatively easy and affordable to produce physical models that offer learners concrete representations of otherwise abstract concepts and representations. We hypothesize that integrating hands-on learning with these models into traditionally lecture-dominant courses may help learners develop representational competence, the ability to interpret, switch between, and appropriately use multiple representations of a concept as appropriate for learning, communication and analysis. This approach also offers potential to mitigate difficulties that learners with lower spatial abilities may encounter in STEM courses. Spatial thinking connects to representational competence in that internal mental representations (i.e. visualizations) facilitate work using multiple external representations. A growing body of research indicates well-developed spatial skills are important to student success in many STEM majors, and that students can improve these skills through targeted training. This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with 3D-printed models, build the theoretical basis for how they support learning, and assess their effectiveness in the classroom. We are exploring how such models can support learners’ development of conceptual understanding and representational competence in calculus and engineering statics. We are also exploring how to leverage the model-based activities to embed spatial skills training into these courses. The project is addressing these questions through parallel work piloting model-based learning activities in the classroom and by investigating specific attributes of the activities in lab studies and focus groups. To date we have developed and piloted a mature suite of activities covering a variety of topics for both calculus and statics. Class observations and complementary studies in the psychology lab are helping us develop a theoretical framework for using the models in instruction. Close observation of how students use the models to solve problems and as communication tools helps identify effective design elements. We are administering two spatial skills assessments as pre/post instruments: the Purdue Spatial Visualizations Test: Rotations (PSVT:R) in calculus; and the Mental Cutting Test (MCT) in statics. We are also developing strategies and refining approaches for assessing representational competence in both subject areas. Moving forward we will be using these assessments in intervention and control sections of both courses to assess the effectiveness of the models for all learners and subgroups of learners. 
    more » « less
  5. This NSF-IUSE exploration and design project began in fall 2018 and features cross-disciplinary collaboration between engineering, math, and psychology faculty to develop learning activities with hands-on models and manipulatives. We are exploring how best to design these activities to support learners’ development of conceptual understanding and representational competence in integral calculus and engineering statics, two foundational courses for most engineering majors. A second goal is to leverage the model-based activities to scaffold spatial skills development in the context of traditional course content. As widely reported in the literature, well-developed spatial abilities correlate with student success and persistence in many STEM majors. We provided calculus students in selected intervention sections taught by four instructors at three different community colleges with take-home model kits that they could reference for a series of asynchronous learning activities. Students in these sections completed the Purdue Spatial Visualization Test: Rotations (PSVT:R) in the first and last weeks of their course. We also administered the assessment in multiple control sections (no manipulatives) taught by the same faculty. This paper analyzes results from fall 2020 through fall 2021 to see if there is any difference between control and intervention sections for the courses as a whole and for demographic subgroups including female-identifying students and historically-underserved students of color. All courses were asynchronous online modality in the context of the COVID-19 pandemic. We find that students in intervention sections of calculus made slightly larger gains on the PSVT:R, but this result is not statistically significant as a whole or for any of the demographic subgroups considered. We also analyzed final course grades for differences between control and intervention sections and found no differences. We found no significant effect of the presence of the model-based activities leading to increased PSVT:R gains or improved course grades. We would not extend this conclusion to face-to-face implementation, however, due primarily to the compromises made to adapt the curriculum from in-person group learning to asynchronous individual work and inconsistent engagement of the online students with the modeling activities. 
    more » « less