skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parametric Bootstrap for Differentially Private Confidence Intervals
The goal of this paper is to develop a practical and general-purpose approach to construct confidence intervals for differentially private parametric estimation. We find that the parametric bootstrap is a simple and effective solution. It cleanly reasons about variability of both the data sample and the randomized privacy mechanism and applies "out of the box" to a wide class of private estimation routines. It can also help correct bias caused by clipping data to limit sensitivity. We prove that the parametric bootstrap gives consistent confidence intervals in two broadly relevant settings, including a novel adaptation to linear regression that avoids accessing the covariate data multiple times. We demonstrate its effectiveness for a variety of estimators, and find empirically that it provides confidence intervals with good coverage even at modest sample sizes and performs better than alternative approaches.  more » « less
Award ID(s):
1749854
PAR ID:
10359639
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of The 25th International Conference on Artificial Intelligence and Statistics (AITSTAS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Understanding the pathways whereby an intervention has an effect on an outcome is a common scientific goal. A rich body of literature provides various decompositions of the total intervention effect into pathway-specific effects. Interventional direct and indirect effects provide one such decomposition. Existing estimators of these effects are based on parametric models with confidence interval estimation facilitated via the nonparametric bootstrap. We provide theory that allows for more flexible, possibly machine learning-based, estimation techniques to be considered. In particular, we establish weak convergence results that facilitate the construction of closed-form confidence intervals and hypothesis tests and prove multiple robustness properties of the proposed estimators. Simulations show that inference based on large-sample theory has adequate small-sample performance. Our work thus provides a means of leveraging modern statistical learning techniques in estimation of interventional mediation effects. 
    more » « less
  2. null (Ed.)
    Abstract Motivation The standard bootstrap method is used throughout science and engineering to perform general-purpose non-parametric resampling and re-estimation. Among the most widely cited and widely used such applications is the phylogenetic bootstrap method, which Felsenstein proposed in 1985 as a means to place statistical confidence intervals on an estimated phylogeny (or estimate ‘phylogenetic support’). A key simplifying assumption of the bootstrap method is that input data are independent and identically distributed (i.i.d.). However, the i.i.d. assumption is an over-simplification for biomolecular sequence analysis, as Felsenstein noted. Results In this study, we introduce a new sequence-aware non-parametric resampling technique, which we refer to as RAWR (‘RAndom Walk Resampling’). RAWR consists of random walks that synthesize and extend the standard bootstrap method and the ‘mirrored inputs’ idea of Landan and Graur. We apply RAWR to the task of phylogenetic support estimation. RAWR’s performance is compared to the state-of-the-art using synthetic and empirical data that span a range of dataset sizes and evolutionary divergence. We show that RAWR support estimates offer comparable or typically superior type I and type II error compared to phylogenetic bootstrap support. We also conduct a re-analysis of large-scale genomic sequence data from a recent study of Darwin’s finches. Our findings clarify phylogenetic uncertainty in a charismatic clade that serves as an important model for complex adaptive evolution. Availability and implementation Data and software are publicly available under open-source software and open data licenses at: https://gitlab.msu.edu/liulab/RAWR-study-datasets-and-scripts. 
    more » « less
  3. Summary Since the introduction of fiducial inference by Fisher in the 1930s, its application has been largely confined to relatively simple, parametric problems. In this paper, we present what might be the first time fiducial inference is systematically applied to estimation of a nonparametric survival function under right censoring. We find that the resulting fiducial distribution gives rise to surprisingly good statistical procedures applicable to both one-sample and two-sample problems. In particular, we use the fiducial distribution of a survival function to construct pointwise and curvewise confidence intervals for the survival function, and propose tests based on the curvewise confidence interval. We establish a functional Bernstein–von Mises theorem, and perform thorough simulation studies in scenarios with different levels of censoring. The proposed fiducial-based confidence intervals maintain coverage in situations where asymptotic methods often have substantial coverage problems. Furthermore, the average length of the proposed confidence intervals is often shorter than the length of confidence intervals for competing methods that maintain coverage. Finally, the proposed fiducial test is more powerful than various types of log-rank tests and sup log-rank tests in some scenarios. We illustrate the proposed fiducial test by comparing chemotherapy against chemotherapy combined with radiotherapy, using data from the treatment of locally unresectable gastric cancer. 
    more » « less
  4. While widely used as a general method for uncertainty quantification, the bootstrap method encounters difficulties that raise concerns about its validity in practical applications. This paper introduces a new resampling-based method, termed calibrated bootstrap, designed to generate finite sample-valid parametric inference from a sample of size n. The central idea is to calibrate an m-out-of-n resampling scheme, where the calibration parameter m is determined against inferential pivotal quantities derived from the cumulative distribution functions of loss functions in parameter estimation. The method comprises two algorithms. The first, named resampling approximation (RA), employs a stochastic approximation algorithm to find the value of the calibration parameter m=mα for a given α in a manner that ensures the resulting m-out-of-n bootstrapped 1−α confidence set is valid. The second algorithm, termed distributional resampling (DR), is developed to further select samples of bootstrapped estimates from the RA step when constructing 1−α confidence sets for a range of α values is of interest. The proposed method is illustrated and compared to existing methods using linear regression with and without L1 penalty, within the context of a high-dimensional setting and a real-world data application. The paper concludes with remarks on a few open problems worthy of consideration. 
    more » « less
  5. Discrete-event simulation models generate random variates from input distributions and compute outputs according to the simulation logic. The input distributions are typically fitted to finite real-world data and thus are subject to estimation errors that can propagate to the simulation outputs: an issue commonly known as input uncertainty (IU). This paper investigates quantifying IU using the output confidence intervals (CIs) computed from bootstrap quantile estimators. The standard direct bootstrap method has overcoverage due to convolution of the simulation error and IU; however, the brute-force way of washing away the former is computationally demanding. We present two new bootstrap methods to enhance direct resampling in both statistical and computational efficiencies using shrinkage strategies to down-scale the variabilities encapsulated in the CIs. Our asymptotic analysis shows how both approaches produce tight CIs accounting for IU under limited input data and simulation effort along with the simulation sample-size requirements relative to the input data size. We demonstrate performances of the shrinkage strategies with several numerical experiments and investigate the conditions under which each method performs well. We also show advantages of nonparametric approaches over parametric bootstrap when the distribution family is misspecified and over metamodel approaches when the dimension of the distribution parameters is high. History: Accepted by Bruno Tuffin, Area Editor for Simulation. Funding: This work was supported by the National Science Foundation [CAREER CMMI-1834710, CAREER CMMI-2045400, DMS-1854659, and IIS-1849280]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0044 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0044 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ . 
    more » « less