skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct detection of mirror matter in Twin Higgs models
A bstract We explore the possibility of discovering the mirror baryons and electrons of the Mirror Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an atomic disk. We find that by taking advantage of the complementarity of the different experiments, it may be possible to establish not just the multi-component nature of mirror dark matter, but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the masses and charges of the constituents of the mirror sector. By showing that the mass and charge of mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest effect on direct detection signals.  more » « less
Award ID(s):
1914731
PAR ID:
10359680
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
11
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use high-resolution, hydrodynamic, galaxy simulations from the Latte suite of FIRE-2 simulations to investigate the inherent variation of dark matter in sub-sampled regions around the Solar Circle of a Milky Way-type analogue galaxy and its impact on direct dark matter detection. These simulations show that the baryonic back reaction, as well as the assembly history of substructures, has lasting impacts on the dark matter’s spatial and velocity distributions. These are experienced as ‘gusts’ of dark matter wind around the Solar Circle, potentially complicating interpretations of direct detection experiments on Earth. We find that the velocity distribution function in the galactocentric frame shows strong deviations from the Maxwell Boltzmann form typically assumed in the fiducial Standard Halo Model, indicating the presence of high-velocity substructures. By introducing a new numerical integration technique that removes any dependencies on the Standard Halo Model, we generate event-rate predictions for both single-element Germanium and compound Sodium Iodide detectors, and explore how the variability of dark matter around the Solar Circle influences annual modulation signal predictions. We find that these velocity substructures contribute additional astrophysical uncertainty to the interpretation of event rates, although their impact on summary statistics, such as the peak day of annual modulation, is generally low. 
    more » « less
  2. Abstract Identifying the nature of dark matter (DM) has long been a pressing question for particle physics. In the face of ever-more-powerful exclusions and null results from large-exposure searches for TeV-scale DM interacting with nuclei, a significant amount of attention has shifted to lighter (sub-GeV) DM candidates. Direct detection of the light DM in our galaxy by observing DM scattering off a target system requires new approaches compared to prior searches. Lighter DM particles have less available kinetic energy, and achieving a kinematic match between DM and the target mandates the proper treatment of collective excitations in condensed matter systems, such as charged quasiparticles or phonons. In this context, the condensed matter physics of the target material is crucial, necessitating an interdisciplinary approach. In this review, we provide a self-contained introduction to direct detection of keV–GeV DM with condensed matter systems. We give a brief survey of DM models and basics of condensed matter, while the bulk of the review deals with the theoretical treatment of DM-nucleon and DM-electron interactions. We also review recent experimental developments in detector technology, and conclude with an outlook for the field of sub-GeV DM detection over the next decade. 
    more » « less
  3. null (Ed.)
    Abstract Adopting the Standard Halo Model (SHM) of an isotropic Maxwellian velocity distribution for dark matter (DM) particles in the Galaxy, the most stringent current constraints on their spin-dependent scattering cross-section with nucleons come from the IceCube neutrino observatory and the PICO-60 $$\hbox {C}_3\hbox {F}_8$$ C 3 F 8 superheated bubble chamber experiments. The former is sensitive to high energy neutrinos from the self-annihilation of DM particles captured in the Sun, while the latter looks for nuclear recoil events from DM scattering off nucleons. Although slower DM particles are more likely to be captured by the Sun, the faster ones are more likely to be detected by PICO. Recent N-body simulations suggest significant deviations from the SHM for the smooth halo component of the DM, while observations hint at a dominant fraction of the local DM being in substructures. We use the method of Ferrer et al. (JCAP 1509: 052, 2015) to exploit the complementarity between the two approaches and derive conservative constraints on DM-nucleon scattering. Our results constrain $$\sigma _{\mathrm{SD}} \lesssim 3 \times 10^{-39} \mathrm {cm}^2$$ σ SD ≲ 3 × 10 - 39 cm 2 ( $$6 \times 10^{-38} \mathrm {cm}^2$$ 6 × 10 - 38 cm 2 ) at $$\gtrsim 90\%$$ ≳ 90 % C.L. for a DM particle of mass 1 TeV annihilating into $$\tau ^+ \tau ^-$$ τ + τ - ( $$b\bar{b}$$ b b ¯ ) with a local density of $$\rho _{\mathrm{DM}} = 0.3~\mathrm {GeV/cm}^3$$ ρ DM = 0.3 GeV / cm 3 . The constraints scale inversely with $$\rho _{\mathrm{DM}}$$ ρ DM and are independent of the DM velocity distribution. 
    more » « less
  4. null (Ed.)
    Dark matter may be composed of self-interacting ultralight quantum fields that form macroscopic objects. An example of which includes Q-balls, compact non-topological solitons predicted by a range of theories that are viable dark matter candidates. As the Earth moves through the galaxy, interactions with such objects may leave transient perturbations in terrestrial experiments. Here we propose a new dark matter signature: an asymmetry (and other non-Gaussianities) that may thereby be induced in the noise distributions of precision quantum sensors, such as atomic clocks, magnetometers, and interferometers. Further, we demonstrate that there would be a sizeable annual modulation in these signatures due to the annual variation of the Earth velocity with respect to dark matter halo. As an illustration of our formalism, we apply our method to 6 years of data from the atomic clocks on board GPS satellites and place constraints on couplings for macroscopic dark matter objects with radii R<104km, the region that is otherwise inaccessible using relatively sparse global networks. 
    more » « less
  5. Abstract The shape and orientation of dark matter (DM) halos are sensitive to the microphysics of the DM particles, yet in many mass models, the symmetry axes of the Milky Way’s DM halo are often assumed to be aligned with the symmetry axes of the stellar disk. This is well motivated for the inner DM halo, but not for the outer halo. We use zoomed-in cosmological baryonic simulations from the Latte suite of FIRE-2 Milky Way–mass galaxies to explore the evolution of the DM halo’s orientation with radius and time, with or without a major merger with a Large Magellanic Cloud analog, and when varying the DM model. In three of the four cold DM halos we examine, the orientation of the halo minor axis diverges from the stellar disk vector by more than 20° beyond about 30 galactocentric kpc, reaching a maximum of 30°–90°, depending on the individual halo’s formation history. In identical simulations using a model of self-interacting DM withσ= 1 cm2g−1, the halo remains aligned with the stellar disk out to ∼200–400 kpc. Interactions with massive satellites (M≳ 4 × 1010Mat pericenter;M≳ 3.3 × 1010Mat infall) affect the orientation of the halo significantly, aligning the halo’s major axis with the satellite galaxy from the disk to the virial radius. The relative orientation of the halo and disk beyond 30 kpc is a potential diagnostic of self-interacting DM, if the effects of massive satellites can be accounted for. 
    more » « less