skip to main content


Title: Earth System Model Analysis of How Astronomical Forcing Is Imprinted Onto the Marine Geological Record: The Role of the Inorganic (Carbonate) Carbon Cycle and Feedbacks
Abstract

Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to short and long eccentricity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon (DIC) δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity‐modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.

 
more » « less
Award ID(s):
1702913
NSF-PAR ID:
10359799
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
10
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.

     
    more » « less
  2. Abstract

    Our understanding of the long‐term evolution of the Earth system is based on the assumption that terrestrial weathering rates should respond to, and hence help regulate, atmospheric CO2and climate. Increased terrestrial weathering requires increased carbonate accumulation in marine sediments, which in turn is expected to result in a long‐term deepening of the carbonate compensation depth (CCD). Here, we critically assess this long‐term relationship between climate and carbon cycling. We generate a record of marine deep‐sea carbonate abundance from selected late Paleocene through early Eocene time slices to reconstruct the position of the CCD. Although our data set allows for a modest CCD deepening, we find no statistically significant change in the CCD despite >3 °C global warming, highlighting the need for additional deep‐sea constraints on carbonate accumulation. Using an Earth system model, we show that the impact of warming and increased weathering on the CCD can be obscured by the opposing influences of ocean circulation patterns and sedimentary respiration of organic matter. From our data synthesis and modeling, we suggest that observations of warming, declining δ13C and a relatively stable CCD can be broadly reproduced by mid‐Paleogene increases in volcanic CO2outgassing and weathering. However, remaining data‐model discrepancies hint at missing processes in our model, most likely involving the preservation and burial of organic carbon. Our finding of a decoupling between the CCD and global marine carbonate burial rates means that considerable care is needed in attempting to use the CCD to directly gauge global carbonate burial rates and hence weathering rates.

     
    more » « less
  3. Abstract

    Records of the Ediacaran carbon cycle (635–541 million years ago) include the Shuram excursion (SE), the largest negative carbonate carbon isotope excursion in Earth history (down to −12‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon. Here, we present carbonate and organic carbon isotope (δ13Ccarband δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal‐to‐distal transect across the Yangtze Platform of South China as a test of the spatial variation of theSE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corgare highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that theSEis a primary marine signature. Data compilations demonstrate that theSEwas also accompanied globally by parallel negative shifts of δ34S of carbonate‐associated sulfate (CAS) and increased87Sr/86Sr ratio and coastalCASconcentration, suggesting elevated continental weathering and coastal marine sulfate concentration during theSE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of theSEand coexisting δ13Corgrecords of the Doushantuo, with likely relevance to theSEin other regions. In this model, we infer continued marine redox stratification through theSEbut with increased availability of oxidants (e.g., O2and sulfate) limited to marginal near‐surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving theSE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.

     
    more » « less
  4. Abstract

    Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw‐induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw‐driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean‐atmosphere system and increasepCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate () sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact onpCO2. Calculations found that approximately 80% of in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover,34S/32S ratios,13C/12C ratios of dissolved IC, and sulfur X‐ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values ofpCO2over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values ofpCO2over timescales longer than carbonate compensation but shorter than the residence time of marine (∼107 yr). Furthermore, the absolute concentrations of and Mg2+in the Koyukuk River, as well as the ratios of and Mg2+to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale‐dependent feedback on warming.

     
    more » « less
  5. Abstract

    The13C/12C of dissolved inorganic carbon (δ13CDIC) carries valuable information on ocean biological C‐cycling, air‐sea CO2exchange, and circulation. Paleo‐reconstructions of oceanic13C from sediment cores provide key insights into past as changes in these three drivers. As a step toward full inclusion of13C in the next generation of Earth system models, we implemented13C‐cycling in a 1° lateral resolution ocean‐ice‐biogeochemistry Geophysical Fluid Dynamics Laboratory (GFDL) model driven by Common Ocean Reference Experiment perpetual year forcing. The model improved the mean of modernδ13CDICover coarser resolution GFDL‐model implementations, capturing the Southern Ocean decline in surfaceδ13CDICthat propagates to the deep sea via deep water formation. Controls onδ13CDICof the deep‐sea are quantified using both observations and model output. The biological control is estimated from the relationship between deep‐sea Pacificδ13CDICand phosphate (PO4). Theδ13CDIC:PO4slope from observations is revised to a value of 1.01 ± 0.02‰ (μmol kg−1)−1, consistent with a carbon to phosphate ratio of organic matter (C:Porg) of 124 ± 10. Model output yields a lowerδ13CDIC:PO4than observed due to too low C:Porg. The ocean circulation impacts deep modernδ13CDICin two ways, via the relative proportion of Southern Ocean and North Atlantic deep water masses, and via the preindustrialδ13CDICof these water mass endmembers. Theδ13CDICof the endmembers ventilating the deep sea are shown to be highly sensitive to the wind speed dependence of air‐sea CO2gas exchange. Reducing the coefficient for air‐sea gas exchange following OMIP‐CMIP6 protocols improves significantly surfaceδ13CDICrelative to previous gas exchange parameterizations.

     
    more » « less