skip to main content


Title: Seismic Moment Accumulation Response to Lateral Crustal Variations of the San Andreas Fault System
Abstract

Rheologic variations in the Earth's crust (like elastic plate thickness [EPT] or crustal rigidity) modulate the rate at which seismic moment accumulates for potentially hazardous faults of the San Andreas Fault System (SAFS). To quantify rates of seismic moment accumulation, Global Navigation Satellite Systems, and Interferometric Synthetic Aperture Radar data were used to constrain surface deformation rates of a four‐dimensional viscoelastic deformation model that incorporates rheological variations spanning a 900 km section of the SAFS. Lateral variations in EPT, estimated from surface heat flow and seismic depth to the lithosphere‐asthenosphere boundary, were converted to lateral variations in rigidity and then used to solve for seismic moment accumulation rates on 32 fault segments. We find a cluster of elevated seismic moment rates (11–20 × 1015 Nm year−1km−1) along the main SAFS trace spanning the historicalMw7.9 1857 Fort Tejon earthquake rupture length; present‐day seismic moment magnitude on these segments ranges fromMw7.2–7.6. We also find that the average plate thickness in the Salton Trough is reduced to only 60% of the regional average, which results in a ∼60% decrease in moment accumulation rate along the Imperial fault. Likewise, a 30% increase of average plate thickness results in at least a ∼30% increase in moment rate and even larger increases are identified in regions of complex plate heterogeneity. These results emphasize the importance of considering rheological variations when estimating seismic hazard, suggesting that meaningful changes in seismic moment accumulation are revealed when considering spatial variations in crustal rheology.

 
more » « less
NSF-PAR ID:
10359805
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rates of crustal deformation in the southern Basin and Range (SBR) and Colorado Plateau (CP) provinces are relatively low in the context of the Pacific‐North America plate boundary (PA–NA); however, the accumulation of small amounts of strain over long periods of time can lead to large earthquakes such as theMw7.5 1887 Sonoran earthquake in northern Mexico. SBR and CP rates of deformation are difficult to quantify due to a dearth of young faulting and seismicity. Moreover, strain accumulation and release related to the adjacent, more active San Andreas and Gulf of California fault systems to the west and southwest can mask the background strain rates associated with SBR and CP tectonics. With data from an enhanced continuous GPS network, we estimate crustal surface velocities of the SBR and CP, after removing coseismic and postseismic displacements, and elastic loading effects arising from major fault zones to the (south)west. We use cluster analysis and geologic data to separate the GPS velocity field into regions and calculate distinct block rotation and uniform strain rates for each region. We find the highest strain rate region includes southwestern Arizona; an area with sparse Quaternary faults, relatively low seismicity, and a relatively large discrepancy between geodetic and geologic rates of deformation. This anomalous strain rate may reflect residual, unmodeled PA‐NA strain seeping into the Arizona study area from the west. Alternatively, it may represent the potential for one or more rare, future, large‐magnitude earthquakes or indicate strain is being released through other process(es).

     
    more » « less
  2. Abstract

    The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.

     
    more » « less
  3. null (Ed.)
    Recent GPS studies show that the Indo-Burma subduction system is locked with the implication of a potential large-magnitude earthquake. To inform better seismic hazard models in the region, we need an improved understanding of the crustal structure and the dynamics of the Indo-Burma subduction system. The Bangladesh-India-Myanmar (BIMA) tripartite project deployed 60 broadband seismometers across the subduction system and have been continuously recording data for ~2 years. In this study, we computed receiver functions from 30 high-quality earthquakes (M≥5.9) with epicentral distances between 30º and 90º recorded by the array. The algorithm utilized ensures the uniqueness of the seismic model and provides an uncertainty estimate of every converted wave amplitude. We stacked all the receiver functions produced at each station along the entire transect to generate a cross-sectional model of the average crustal structure. The level of detail in the image is improved by computing higher frequency receiver functions up to 4 Hz. The results represent some of the strongest constraints on crustal structure across the subduction system. Beneath the Neogene accretionary prism's outer belt, we observe a primary conversion associated with the Ganges Brahmaputra Delta that ranges in depth from ~10 km near the deformation front up to ~12 km at the eastern boundary. From the eastern end of the Neogene accretionary prism to the Sagaing Fault, we image the Indian subducting slab and the Central Myanmar basin. The depth-extent of seismicity associated with the Wadati-Benioff zone is consistent with the locations of primary conversions from the subducting plate. We further verify the converted phases of the slab by analyzing azimuthal moveout variations. The Central Myanmar basin is roughly bowl-shaped in cross-section with a maximum thickness of ~15 km about halfway between the Kabaw and Sagaing faults. The average crustal thickness beneath the Ganges-Brahmaputra delta is ~20 km, most likely representing a transitional crust formed from thinning of the continental crust intruded and underplated by igneous rocks. In contrast, the average thickness of the continental crust beneath the Central Myanmar basin is ~40 km. Our results provide a baseline model for future geophysical investigations of the Indo-Burma subduction zone. 
    more » « less
  4. Abstract

    The rheology of the crust and mantle and the interaction of viscoelastic flow with seismic/aseismic slip on faults control the state of stress in the lithosphere over multiple seismic cycles. The rheological behavior of rocks is well constrained in a laboratory setting, but thein situproperties of the lithosphere and its lateral variations remain poorly known. Here, we access the lower‐crustal rheology in Southern California by exploiting 8 years of geodetic postseismic deformation following the 2010 El Mayor‐Cucapah earthquake. The data illuminate viscoelastic flow in the lower crust with lateral variations of effective viscosity correlated with the geological province. We show that a Burgers assembly with dashpots following a nonlinear constitutive law can approximate the temporal evolution of stress and strain rate, indicating the activation of nonlinear transient creep before steady‐state dislocation creep. The transient and background viscosities in the lower crust of the Salton Trough are on the order of ~1018and ~1019 Pa s, respectively, about an order of magnitude lower than those in the surrounding regions. We highlight the importance of transient creep, nonlinear flow laws, and lateral variations of rheological properties to capture the entire history of postseismic relaxation following the El Mayor‐Cucapah earthquake.

     
    more » « less
  5. Abstract

    Variations in fault zone maturity have intermittently been invoked to explain variations in some seismological observations for large earthquakes. However, the lack of a unified geological definition of fault maturity makes quantitative assessment of its importance difficult. We evaluate the degree of empirical correlation between geological and geometric measurements commonly invoked as indicative of fault zone maturity and remotely measured seismological source parameters of 34MW ≥ 6.0 shallow strike‐slip events. Metrics based on surface rupture segmentation, such as number of segments and surface rupture azimuth changes, correlate best with seismic source attributes while the correlations with cumulative fault slip are weaker. Average rupture velocity shows the strongest correlation with metrics of maturity, followed by relative aftershock productivity. Mature faults have relatively lower aftershock productivity and higher rupture velocity. A more complex relation is found with moment‐scaled radiated energy. There appears to be distinct behavior of very immature events which radiate modest seismic energy, while intermediate mature faults have events with higher moment‐scaled radiated energy and very mature faults with increasing cumulative slip tend to have events with reduced moment‐scaled radiated energy. These empirical comparisons establish that there are relationships between remote seismological observations and fault system maturity that can help to understand variations in seismic hazard among different fault environments and to assess the relative maturity of inaccessible or blind fault systems for which direct observations of maturity are very limited.

     
    more » « less