skip to main content

Title: Global N 2 O Emissions From Cropland Driven by Nitrogen Addition and Environmental Factors: Comparison and Uncertainty Analysis

Human activities have caused considerable perturbations of the nitrogen (N) cycle, leading to a ~20% increase in the concentration of atmospheric nitrous oxide (N2O) since the preindustrial era. While substantial efforts have been made to quantify global and regional N2O emissions from cropland, there is large uncertainty regarding how climate change and variability have altered net N2O fluxes at annual and decadal time scales. Herein, we applied a process‐based dynamic land ecosystem model (DLEM) to estimate global N2O emissions from cropland driven by synthetic N fertilizer application and multiple environmental factors (i.e., elevated CO2, atmospheric N deposition, and climate change). We estimate that global cropland N2O emissions increased by 180% (from 1.1 ± 0.2 to 3.3 ± 0.1 Tg N year−1; mean ±1 standard deviation) during 1961–2014. Synthetic N fertilizer applications accounted for ~70% of total emissions during 2000–2014. At the regional scale, Europe and North America were two leading regions for N2O emissions in the 1960s. However, East Asia became the largest emitter after the 1990s. Compared with estimates based on linear and nonlinear emission factors, our results were 150% and 186% larger, respectively, at the global scale during 2000–2014. Our higher estimates of N2O emissions could be attributable to the legacy effect from previous N addition to cropland as well as the interactive effect of N addition and climate change. To reduce future cropland N2O emissions, effective mitigation strategies should be implemented in regions that have received high levels of N fertilizer and regions that would be more vulnerable to future climate change.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Agricultural soils play a dual role in regulating the Earth's climate by releasing or sequestering carbon dioxide (CO2) in soil organic carbon (SOC) and emitting non‐CO2greenhouse gases (GHGs) such as nitrous oxide (N2O) and methane (CH4). To understand how agricultural soils can play a role in climate solutions requires a comprehensive assessment of net soil GHG balance (i.e., sum of SOC‐sequestered CO2and non‐CO2GHG emissions) and the underlying controls. Herein, we used a model‐data integration approach to understand and quantify how natural and anthropogenic factors have affected the magnitude and spatiotemporal variations of the net soil GHG balance in U.S. croplands during 1960–2018. Specifically, we used the dynamic land ecosystem model for regional simulations and used field observations of SOC sequestration rates and N2O and CH4emissions to calibrate, validate, and corroborate model simulations. Results show that U.S. agricultural soils sequestered Tg CO2‐C year−1in SOC (at a depth of 3.5 m) during 1960–2018 and emitted Tg N2O‐N year−1and Tg CH4‐C year−1, respectively. Based on the GWP100 metric (global warming potential on a 100‐year time horizon), the estimated national net GHG emission rate from agricultural soils was Tg CO2‐eq year−1, with the largest contribution from N2O emissions. The sequestered SOC offset ~28% of the climate‐warming effects resulting from non‐CO2GHG emissions, and this offsetting effect increased over time. Increased nitrogen fertilizer use was the dominant factor contributing to the increase in net GHG emissions during 1960–2018, explaining ~47% of total changes. In contrast, reduced cropland area, the adoption of agricultural conservation practices (e.g., reduced tillage), and rising atmospheric CO2levels attenuated net GHG emissions from U.S. croplands. Improving management practices to mitigate N2O emissions represents the biggest opportunity for achieving net‐zero emissions in U.S. croplands. Our study highlights the importance of concurrently quantifying SOC‐sequestered CO2and non‐CO2GHG emissions for developing effective agricultural climate change mitigation measures.

    more » « less
  2. Abstract

    The atmospheric concentration of nitrous oxide (N2O) has increased by 23% since the pre‐industrial era, which substantially destructed the stratospheric ozone layer and changed the global climate. However, it remains uncertain about the reasons behind the increase and the spatiotemporal patterns of soil N2O emissions, a primary biogenic source. Here, we used an integrative land ecosystem model, Dynamic Land Ecosystem Model (DLEM), to quantify direct (i.e., emitted from local soil) and indirect (i.e., emissions related to local practices but occurring elsewhere) N2O emissions in the contiguous United States during 1900–2019. Newly developed geospatial data of land‐use history and crop‐specific agricultural management practices were used to force DLEM at a spatial resolution of 5 arc‐min by 5 arc‐min. The model simulation indicates that the U.S. soil N2O emissions totaled 0.97 ± 0.06 Tg N year−1during the 2010s, with 94% and 6% from direct and indirect emissions, respectively. Hot spots of soil N2O emission are found in the US Corn Belt and Rice Belt. We find a threefold increase in total soil N2O emission in the United States since 1900, 74% of which is from agricultural soil emissions, increasing by 12 times from 0.04 Tg N year−1in the 1900s to 0.51 Tg N year−1in the 2010s. More than 90% of soil N2O emission increase in agricultural soils is attributed to human land‐use change and agricultural management practices, while increases in N deposition and climate warming are the dominant drivers for N2O emission increase from natural soils. Across the cropped acres, corn production stands out with a large amount of fertilizer consumption and high‐emission factors, responsible for nearly two‐thirds of direct agricultural soil N2O emission increase since 1900. Our study suggests a large N2O mitigation potential in cropland and the importance of exploring crop‐specific mitigation strategies and prioritizing management alternatives for targeted crop types.

    more » « less
  3. Abstract

    Our understanding and quantification of global soil nitrous oxide (N2O) emissions and the underlying processes remain largely uncertain. Here, we assessed the effects of multiple anthropogenic and natural factors, including nitrogen fertilizer (N) application, atmospheric N deposition, manure N application, land cover change, climate change, and rising atmospheric CO2concentration, on global soil N2O emissions for the period 1861–2016 using a standard simulation protocol with seven process‐based terrestrial biosphere models. Results suggest global soil N2O emissions have increased from 6.3 ± 1.1 Tg N2O‐N/year in the preindustrial period (the 1860s) to 10.0 ± 2.0 Tg N2O‐N/year in the recent decade (2007–2016). Cropland soil emissions increased from 0.3 Tg N2O‐N/year to 3.3 Tg N2O‐N/year over the same period, accounting for 82% of the total increase. Regionally, China, South Asia, and Southeast Asia underwent rapid increases in cropland N2O emissions since the 1970s. However, US cropland N2O emissions had been relatively flat in magnitude since the 1980s, and EU cropland N2O emissions appear to have decreased by 14%. Soil N2O emissions from predominantly natural ecosystems accounted for 67% of the global soil emissions in the recent decade but showed only a relatively small increase of 0.7 ± 0.5 Tg N2O‐N/year (11%) since the 1860s. In the recent decade, N fertilizer application, N deposition, manure N application, and climate change contributed 54%, 26%, 15%, and 24%, respectively, to the total increase. Rising atmospheric CO2concentration reduced soil N2O emissions by 10% through the enhanced plant N uptake, while land cover change played a minor role. Our estimation here does not account for indirect emissions from soils and the directed emissions from excreta of grazing livestock. To address uncertainties in estimating regional and global soil N2O emissions, this study recommends several critical strategies for improving the process‐based simulations.

    more » « less
  4. Abstract

    Excessive ammonia (NH3) emitted from nitrogen (N) fertilizer applications in global croplands plays an important role in atmospheric aerosol production, resulting in visibility reduction and regional haze. However, large uncertainty exists in the estimates of NH3emissions from global and regional croplands, which utilize different data and methods. In this study, we have coupled a process‐based Dynamic Land Ecosystem Model (DLEM) with the bidirectional NH3exchange module in the Community Multiscale Air‐Quality (CMAQ) model (DLEM‐Bi‐NH3) to quantify NH3emissions at the global and regional scale, and crop‐specific NH3emissions globally at a spatial resolution of 0.5° × 0.5° during 1961–2010. Results indicate that global NH3emissions from N fertilizer use have increased from 1.9 ± 0.03 to 16.7 ± 0.5 Tg N/year between 1961 and 2010. The annual increase of NH3emissions shows large spatial variations across the global land surface. Southern Asia, including China and India, has accounted for more than 50% of total global NH3emissions since the 1980s, followed by North America and Europe. Rice cultivation has been the largest contributor to total global NH3emissions since the 1990s, followed by corn and wheat. In addition, results show that empirical methods without considering environmental factors (constant emission factor in the IPCC Tier 1 guideline) could underestimate NH3emissions in context of climate change, with the highest difference (i.e., 6.9 Tg N/year) occurring in 2010. This study provides a robust estimate on global and regional NH3emissions over the past 50 years, which offers a reference for assessing air quality consequences of future nitrogen enrichment as well as nitrogen use efficiency improvement.

    more » « less
  5. Abstract

    Grassland ecosystems play an essential role in climate regulation through carbon (C) storage in plant and soil. But, anthropogenic practices such as livestock grazing, grazing related excreta nitrogen (N) deposition, and manure/fertilizer N application have the potential to reduce the effectiveness of grassland C sink through increased nitrous oxide (N2O) and methane (CH4) emissions. Although the effect of anthropogenic activities on net greenhouse gas (GHG) fluxes in grassland ecosystems have been investigated at local to regional scales, estimates of net GHG balance at the global scale remains uncertain. With the data-model framework integrating empirical estimates of livestock CH4emissions with process-based modeling estimates of land CO2, N2O and CH4fluxes, we examined the overall global warming potential (GWP) of grassland ecosystems during 1961–2010. We then quantified the grassland-specific and regional variations to identify hotspots of GHG fluxes. Our results show that, over a 100-year time horizon, grassland ecosystems sequestered a cumulative total of 113.9 Pg CO2-eq in plant and soil, but then released 91.9 Pg CO2-eq to the atmosphere, offsetting 81% of the net CO2sink. We also found large grassland-specific variations in net GHG fluxes, withpasturelandsacting as a small GHG source of 1.52 ± 143 Tg CO2-eq yr−1(mean ± 1.0 s.d.) andrangelandsa strong GHG sink (−442 ± 266 Tg CO2-eq yr−1) during 1961–2010. Regionally, Europe acted as a GHG source of 23 ± 10 Tg CO2-eq yr−1, while other regions (i.e. Africa, Southern Asia) were strong GHG sinks during 2001–2010. Our study highlights the importance of considering regional and grassland-specific differences in GHG fluxes for guiding future management and climate mitigation strategies in global grasslands.

    more » « less