skip to main content


Title: Linking Hydrology and Dissolved Organic Matter Characteristics in a Subtropical Wetland: A Long‐Term Study of the Florida Everglades
Abstract

Dissolved organic matter (DOM) acts as an important biogeochemical component of aquatic ecosystems that controls nutrient cycling, influences water quality, and links terrestrial and oceanic carbon pools, yet long‐term studies of how changing environmental drivers alter its abundance and composition are rare. Using a 10‐year, spatially explicit data set from Everglades National Park, a globally significant wetland, we investigated the relationships between DOM quality/quantity and hydrologic/climatic drivers along two contrasting marsh‐estuarine transects based on generalized linear modeling and a cumulative sums analysis. Analyses revealed distinct spatial, seasonal, and interannual patterns in variability of DOC and optical properties. Landscape‐scale seasonal patterns showed an enrichment in microbial‐like and protein‐like DOM during the dry season relative to the wet season. While some compositional constituents varied with the solar calendar, responsive to temperature and photoperiod, others varied with the hydrologic calendar. Independent water level and discharge effects indicated strong hydrologic control on DOM quality that differed between the two transects, evidencing differences in their connectivity to areas of high agricultural activity. Across all sites, a significant long‐term increasing trend in the fluorescence index was observed, associated with a positive correlation with precipitation and also potential changes in agricultural inputs, with other features associated with drought and hurricanes. Lastly, the cumulative sums analysis revealed differences between the two transects in the sensitivity of DOM composition to decreased water levels associated with 30‐year climate scenarios, with the less hydrologically dynamic transect exhibiting greater potential sensitivity.

 
more » « less
NSF-PAR ID:
10359844
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
34
Issue:
12
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The western Arctic Ocean, including its shelves and coastal habitats, has become a focus in ocean acidification research over the past decade as thecolder waters of the region and the reduction of sea ice appear to promote the uptake of excess atmospheric CO2. Due to seasonal sea icecoverage, high-frequency monitoring of pH or other carbonate chemistry parameters is typically limited to infrequent ship-based transects duringice-free summers. This approach has failed to capture year-round nearshore carbonate chemistry dynamics which is modulated by biological metabolismin response to abundant allochthonous organic matter to the narrow shelf of the Beaufort Sea and adjacent regions. The coastline of the Beaufort Seacomprises a series of lagoons that account for > 50 % of the land–sea interface. The lagoon ecosystems are novel features that cycle between“open” and “closed” phases (i.e., ice-free and ice-covered, respectively). In this study, we collected high-frequency pH, salinity,temperature, and photosynthetically active radiation (PAR) measurements in association with the Beaufort Lagoon Ecosystems – Long Term Ecological Research program – for an entire calendar yearin Kaktovik Lagoon, Alaska, USA, capturing two open-water phases and one closed phase. Hourly pH variability during the open-water phases are someof the fastest rates reported, exceeding 0.4 units. Baseline pH varied substantially between the open phase in 2018 and open phase in 2019 from ∼ 7.85to 8.05, respectively, despite similar hourly rates of change. Salinity–pH relationships were mixed during all three phases, displaying nocorrelation in the 2018 open phase, a negative correlation in the 2018/19 closed phase, and a positive correlation during the 2019 open phase. The high frequency of pH variabilitycould partially be explained by photosynthesis–respiration cycles as correlation coefficients between daily average pH and PAR were 0.46 and 0.64for 2018 and 2019 open phases, respectively. The estimated annual daily average CO2 efflux (from sea to atmosphere) was5.9 ± 19.3 mmolm-2d-1, which is converse to the negative influx of CO2 estimated for the coastal Beaufort Seadespite exhibiting extreme variability. Considering the geomorphic differences such as depth and enclosure in Beaufort Sea lagoons, furtherinvestigation is needed to assess whether there are periods of the open phase in which lagoons are sources of carbon to the atmosphere, potentiallyoffsetting the predicted sink capacity of the greater Beaufort Sea. 
    more » « less
  2. Abstract

    Coastal drainages contain multiple sources of dissolved organic matter (DOM) that influence OM transformation and fate along inland‐to‐marine gradients. Anthropogenic activities have altered DOM composition in urban drainages, thereby influencing in‐stream breakdown rates, primary productivity, and downstream export. Yet, it is uncertain how hydrologic conditions (i.e., rainfall, tides, shallow groundwater) interact with different sources of DOM to regulate the transformation and export of DOM through urban coastal drainages. We characterized how seasonal changes in hydrologic conditions influence DOM composition and bioavailability in tidally influenced drainages in Miami, FL, USA. We estimated the quality and bioavailability of DOM using compositional proxies based on fluorescence spectroscopy, including parallel‐factor analysis, and measured dissolved organic carbon degradation during laboratory incubations containing a local bacterial community. Interactions between stormwater runoff and tidal amplitude increased the bioavailability of DOM and were positively correlated with predominantly humic‐like components in the wet season and protein‐like components in the dry season. Further, increases in tryptophan fluorescence intensity corresponded with elevated concentrations ofEscherichia coliand enterococci—likely from waste‐impacted groundwater—and contributed substantially to overall DOM bioavailability. Our results provide new evidence of an urban priming effect in which labile autochthonous DOM from anthropogenic sources facilitates microbial degradation of DOM that is driven by seasonal differences in stormwater runoff and tides. As hydrologic conditions in near‐shore aquatic ecosystems shift with urbanization and climate‐driven changes in sea‐level rise, increases in autochthonous sources of bioavailable DOM may impact ecosystem metabolism and affect the quality of DOM exported downstream.

     
    more » « less
  3. Abstract

    Riverine dissolved iron (Fe) affects water color, nutrients, and marine carbon cycling. Fe size and coupling with dissolved organic matter (DOM), in part, modulates the biogeochemical roles of riverine Fe. We used size fractionation to operationally define dissolved Fe (< 0.22 μm) into soluble (< 0.02 μm) and colloidal (0.02–0.22 μm) fractions in order to characterize the downstream drivers, concentrations, and fluxes of Fe across season and hydrologic regime at the freshwater Connecticut River mainstem, which we sampled bi‐weekly for 2 yrs. Drivers of colloidal and soluble Fe concentrations were markedly different. The response of colloidal Fe concentration to changes in discharge was modulated by water temperature; colloidal Fe decreased with increasing discharge at temperatures < 10.5°C, but increased with increasing discharge at temperatures > 10.5°C. Conversely, soluble Fe concentrations were only positively correlated to discharge at high temperatures (> 20°C). Soluble Fe was strongly positively correlated to a humic‐like DOM fluorescence component, suggesting coupling with DOM subsets, potentially through complexation. While average colloidal Fe fluxes varied twofold seasonally, soluble Fe fluxes varied ninefold; therefore, soluble Fe variability was more important to the overall dissolved Fe variability than colloidal Fe, despite lower concentrations. Seasonal Fe fluxes were decoupled from discharge: dissolved and soluble Fe fluxes were greatest in the fall, whereas discharge was greatest in the spring. Fluxes of soluble Fe, which may be more bioavailable and more likely to be exported to the ocean, were lowest in the summer when downstream biological demand is high, having implications for primary productivity and iron uptake.

     
    more » « less
  4. Dissolved organic matter (DOM) drives biogeochemical processes in aquatic ecosystems. Yet, how hydrologic restoration in nutrient‐enriched ecosystems changes DOM and the consequences of those changes for the carbon cycle remain unclear. To predict the consequences of hydrologic restoration on carbon cycling in restored wetlands, we need to understand how local environmental factors influence production, processing, and transport of DOM. We collected surface water samples along transects in restored peat (organic‐rich, macrophyte‐dominated) and marl (carbonate, periphyton‐dominated) freshwater marshes in the Everglades (Florida, U.S.A.) that varied in environmental factors (water depth, phosphorus [P] concentrations [water, macrophytes, periphyton, and soil], and primary producer biomass) to understand drivers of dissolved organic carbon (DOC) concentrations and DOM composition. Higher water depths led to a “greening” of DOM, due to increasing algal contributions, with decreasing concentrations of DOC in peat wetlands, and a “browning” of DOM, due to increasing humic contributions, with increasing DOC concentrations in marl wetlands. Soil total P was positively correlated with DOC concentrations and microbial contributions to DOM in peat wetlands, and periphyton total P was positively correlated with algal contributions to DOM in marl wetlands. Despite large variations in both vegetation biomass and periphyton biovolume across transects and sites, neither were predictors of DOC concentrations or DOM composition. Hydrologic restoration differentially alters DOM in peat and marl marshes and interacts with nutrient enrichment to shift proportions of green and brown contributions to surface water chemistry, which has the potential to modify wetland food webs, as well as the processing of carbon by micro‐organisms.

     
    more » « less
  5. Abstract Background Spawning migrations are a widespread phenomenon among fishes, often occurring in response to environmental conditions prompting movement into reproductive habitats (migratory cues). However, for many species, individual fish may choose not to migrate, and research suggests that conditions preceding the spawning season (migratory primers) may influence this decision. Few studies have provided empirical descriptions of these prior conditions, partly due to a lack of long-term data allowing for robust multi-year comparisons. To investigate how primers and cues interact to shape the spawning migrations of coastal fishes, we use acoustic telemetry data from Common Snook ( Centropomus undecimalis ) in Everglades National Park, Florida, USA. A contingent of Snook migrate between rivers and coastal spawning sites, varying annually in both the proportion of the population that migrates and the timing of migration within the spawning season. However, the specific environmental factors that serve as migratory primers and cues remain unknown. Methods We used eight years of acoustic telemetry data (2012–2019) from 173 tagged Common Snook to investigate how primers and cues influence migratory patterns at different temporal scales. We hypothesize that (1) interannual differences in hydrologic conditions preceding the spawning season contribute to the number of individuals migrating each year, and (2) specific environmental cues trigger the timing of migrations during the spawning season. We used GLMMs to model both the annual and seasonal migratory response in relation to flow characteristics (water level, rate of change in water level), other hydrologic/abiotic conditions (temperature, salinity), fish size, and phenological cues independent of riverine conditions (photoperiod, lunar cycle). Results We found that the extent of minimum marsh water level prior to migration and fish size influence the proportion of Snook migrating each year, and that high river water level and daily rates of change serve as primary cues triggering migration timing. Conclusion Our findings illustrate how spawning migrations are shaped by environmental factors acting at different temporal scales and emphasize the importance of long-term movement data in understanding these patterns. Research providing mechanistic descriptions of conditions that promote migration and reproduction can help inform management decisions aimed at conserving ecologically and economically important species. 
    more » « less