skip to main content


Title: The Impact of Sea‐Ice Loss on Arctic Climate Feedbacks and Their Role for Arctic Amplification
Abstract

Sea‐ice loss and radiative feedbacks have been proposed to explain Arctic amplification (AA)—the enhanced Arctic warming under increased greenhouse gases, but their relationship is unclear. By analyzing coupled CESM1 simulations with 1%/year CO2increases, we show that without large sea‐ice loss and AA, the lapse rate, Planck, and surface albedo feedbacks are greatly reduced, while the positive water vapor feedback changes little. The positive Arctic lapse rate feedback, which results from enhanced surface warming rather than the high stability of Arctic air, and changes in atmospheric energy transport across the Arctic Circle are a result, not a cause, of AA; while the water vapor feedback also plays a minor role. Instead, AA results from enhanced winter oceanic heating associated with sea‐ice loss that is aided by a positive surface albedo feedback in summer and positive cloud feedback in winter.

 
more » « less
Award ID(s):
2015780 1743738
NSF-PAR ID:
10359944
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
15
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Radiative climate feedbacks in the Arctic have been extensively studied, but their spatial and seasonal variations have not been thoroughly examined. Using ERA5 reanalysis data, we examine seasonal variations in Arctic climate feedbacks and their relationship to sea‐ice loss based on changes from 1950–1979 to 1990–2019. The spring and summer seasons experienced large sea‐ice loss, strong surface albedo feedback, and large oceanic heat uptake. Arctic clouds exerted small net cooling in May‐June‐July but moderate warming during the cold season, especially over areas with large sea‐ice loss where cloud liquid and ice water content increased. Arctic water vapor feedback peaked in summer but was weak and uncorrelated with sea‐ice loss. Arctic positive lapse rate feedback (LRF) was strongest in winter over areas with large sea‐ice loss and weak inversion but uncorrelated with atmospheric stability, suggesting that oceanic heating from sea‐ice loss led to enhanced surface warming and the positive LRF.

     
    more » « less
  2. Abstract

    Arctic amplification (AA), defined as the enhanced warming of the Arctic compared to the global average, is a robust feature of historical observations and simulations of future climate. Despite many studies investigating AA mechanisms, their relative importance remains contested. In this study, we examine the different timescales of these mechanisms to improve our understanding of AA’s fundamental causes. We use the Community Earth System Model v1, Large Ensemble configuration (CESM-LE), to generate large ensembles of 2 years simulations subjected to an instantaneous quadrupling of CO2. We show that AA emerges almost immediately (within days) following CO2increase and before any significant loss of Arctic sea ice has occurred. Through a detailed energy budget analysis of the atmospheric column, we determine the time-varying contributions of AA mechanisms over the simulation period. Additionally, we examine the dependence of these mechanisms on the season of CO2quadrupling. We find that the surface heat uptake resulting from the different latent heat flux anomalies between the Arctic and global average, driven by the CO2forcing, is the most important AA contributor on short (<1 month) timescales when CO2is increased in January, followed by the lapse rate feedback. The latent heat flux anomaly remains the dominant AA mechanism when CO2is increased in July and is joined by the surface albedo feedback, although AA takes longer to develop. Other feedbacks and energy transports become relevant on longer (>1 month) timescales. Our results confirm that AA is an inherently fast atmospheric response to radiative forcing and reveal a new AA mechanism.

     
    more » « less
  3. Abstract

    Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality.

    Significance Statement

    Under increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming.

     
    more » « less
  4. Abstract

    Arctic amplification (AA), referring to the phenomenon of amplified warming in the Arctic compared to the warming in the rest of the globe, is generally attributed to the increasing concentrations of carbon dioxide (CO2) in the atmosphere. However, little attention has been paid to the mechanisms and quantitative variations of AA under decreasing levels of CO2, when cooling where the Arctic region is considerably larger than over the rest of the planet. Analyzing climate model experiments forced with a wide range of CO2concentrations (from 1/8× to 8×CO2, with respect to preindustrial levels), we show that AA indeed occurs under decreasing CO2concentrations, and it is stronger than AA under increasing CO2concentrations. Feedback analysis reveals that the Planck, lapse-rate, and albedo feedbacks are the main contributors to producing AAs forced by CO2increase and decrease, but the stronger lapse-rate feedback associated with decreasing CO2level gives rise to stronger AA. We further find that the increasing CO2concentrations delay the peak month of AA from November to December or January, depending on the forcing strength. In contrast, decreasing CO2levels cannot shift the peak of AA earlier than October, as a consequence of the maximum sea-ice increase in September which is independent of forcing strength. Such seasonality changes are also presented in the lapse-rate feedback, but do not appear in other feedbacks nor in the atmospheric and oceanic heat transport processeses. Our results highlight the strongly asymmetric responses of AA, as evidenced by the different changes in its intensity and seasonality, to the increasing and decreasing CO2concentrations. These findings have significant implications for understanding how carbon removal could impact the Arctic climate, ecosystems, and socio-economic activities.

     
    more » « less
  5. Abstract

    The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes.

     
    more » « less