skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Three Flavors of Radiative Feedbacks and Their Implications for Estimating Equilibrium Climate Sensitivity
Abstract

The realization that atmospheric radiative feedbacks depend on the underlying patterns of surface warming and global temperature, and thus, change over time has lead to a proliferation of feedback definitions and methods to estimate equilibrium climate sensitivity (ECS). We contrast three flavors of radiative feedbacks – equilibrium, effective, and differential feedback – and discuss their physical interpretations and applications. We show that their values at any given time can differ more than 1 and their implied equilibrium or effective climate sensitivity can differ several degrees. With ten (quasi) equilibrated climate models, we show that 400 years might be enough to estimate the true ECS within a 5% error using a simple regression method utilizing the differential feedback parameter. We argue that a community‐wide agreement on the interpretation of the different feedback definitions would advance the quest to narrow the estimate of climate sensitivity.

 
more » « less
Award ID(s):
1752796
NSF-PAR ID:
10359993
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
15
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A reference or “no‐feedback” radiative response to warming is fundamental to understanding how much global warming will occur for a given change in greenhouse gases or solar radiation incident on the Earth. The simplest estimate of this radiative response is given by the Stefan‐Boltzmann law as W m−2 K−1for Earth's present climate, whereis a global effective emission temperature. The comparable radiative response in climate models, widely called the “Planck feedback,” averages −3.3 W m−2 K−1. This difference of 0.5 W m−2 K−1is large compared to the uncertainty in the net climate feedback, yet it has not been studied carefully. We use radiative transfer models to analyze these two radiative feedbacks to warming, and find that the difference arises primarily from the lack of stratospheric warming assumed in calculations of the Planck feedback (traditionally justified by differing constraints on and time scales of stratospheric adjustment relative to surface and tropospheric warming). The Planck feedback is thus masked for wavelengths with non‐negligible stratospheric opacity, and this effect implicitly acts to amplify warming in current feedback analysis of climate change. Other differences between Planck and Stefan‐Boltzmann feedbacks arise from temperature‐dependent gas opacities, and several artifacts of nonlinear averaging across wavelengths, heights, and different locations; these effects partly cancel but as a whole slightly destabilize the Planck feedback. Our results point to an important role played by stratospheric opacity in Earth's climate sensitivity, and clarify a long‐overlooked but notable gap in our understanding of Earth's reference radiative response to warming.

     
    more » « less
  2. null (Ed.)
    Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcingand efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response is linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation. 
    more » « less
  3. null (Ed.)
    Abstract Radiative feedbacks depend on the spatial patterns of sea surface temperature (SST) and thus can change over time as SST patterns evolve—the so-called pattern effect. This study investigates intermodel differences in the magnitude of the pattern effect and how these differences contribute to the spread in effective equilibrium climate sensitivity (ECS) within CMIP5 and CMIP6 models. Effective ECS in CMIP5 estimated from 150-yr-long abrupt4×CO2 simulations is on average 10% higher than that estimated from the early portion (first 50 years) of those simulations, which serves as an analog for historical warming; this difference is reduced to 7% on average in CMIP6. The (negative) net radiative feedback weakens over the course of the abrupt4×CO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this weakening is less dramatic on average in CMIP6. For both ensembles, the total variance in the effective ECS is found to be dominated by the spread in radiative response on fast time scales, rather than the spread in feedback changes. Using Green’s functions derived from two AGCMs shows that the spread in feedbacks on fast time scales may be primarily due to differences in atmospheric model physics, whereas the spread in feedback evolution is primarily governed by differences in SST patterns. Intermodel spread in feedback evolution is well explained by differences in the relative warming in the west Pacific warm-pool regions for the CMIP5 models, but this relation fails to explain differences across the CMIP6 models, suggesting that a stronger sensitivity of extratropical clouds to surface warming may also contribute to feedback changes in CMIP6. 
    more » « less
  4. Abstract

    We examine the response of the Community Earth System Model Versions 1 and 2 (CESM1 and CESM2) to abrupt quadrupling of atmospheric CO2concentrations (4xCO2) and to 1% annually increasing CO2concentrations (1%CO2). Different estimates of equilibrium climate sensitivity (ECS) for CESM1 and CESM2 are presented. All estimates show that the sensitivity of CESM2 has increased by 1.5 K or more over that of CESM1. At the same time the transient climate response (TCR) of CESM1 and CESM2 derived from 1%CO2 experiments has not changed significantly—2.1 K in CESM1 and 2.0 K in CESM2. Increased initial forcing as well as stronger shortwave radiation feedbacks are responsible for the increase in ECS seen in CESM2. A decomposition of regional radiation feedbacks and their contribution to global feedbacks shows that the Southern Ocean plays a key role in the overall behavior of 4xCO2 experiments, accounting for about 50% of the total shortwave feedback in both CESM1 and CESM2. The Southern Ocean is also responsible for around half of the increase in shortwave feedback between CESM1 and CESM2, with a comparable contribution arising over tropical ocean. Experiments using a thermodynamic slab‐ocean model (SOM) yield estimates of ECS that are in remarkable agreement with those from fully coupled Earth system model (ESM) experiments for the same level of CO2increase. Finally, we show that the similarity of TCR in CESM1 and CESM2 masks significant regional differences in warming that occur in the 1%CO2 experiments for each model.

     
    more » « less
  5. Abstract

    To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.

     
    more » « less