skip to main content


Title: How Does LCL Height Influence Deep Convective Updraft Width?
Abstract

Previous studies have hypothesized that the width of deep convection should positively scale with lifting condensation level (LCL) height. To evaluate this hypothesis, we analyzed idealized large‐eddy simulations with varying LCL heights and initial warm bubble widths in unsheared environments with comparable convective available potential energy. For a given initial warm bubble width, simulations with higher LCLs result in wider, deeper, and stronger cloudy updrafts compared to simulations with lower LCLs. Rising dry thermals in higher LCL simulations experience longer residence times within the sub‐cloud layer, and consequently entrain more conditionally unstable air and grow wider before reaching the LCL. The resulting cloudy updrafts are wider, deeper, and have faster vertical velocities because of a reduction in entrainment‐driven dilution of buoyancy, relative to lower LCL simulations. These results confirm the hypothesized positive relationship between LCL height and deep convective updraft width, and provide a physical explanation for this relationship.

 
more » « less
NSF-PAR ID:
10360039
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Orographic deep convection (DC) initiation and rapid evolution from supercells to mesoscale convective systems (MCS) are common near the Sierras de Cόrdoba, Argentina, which was the focal point of the Remote Sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) field campaign. This study used an idealized numerical model with elongated north-south terrain similar to that of the Sierras de Cόrdoba to address how variations in terrain height affected the environment and convective morphology. Simulations used a thermodynamic profile from a RELAMPAGO event that featured both supercell and MCS storm modes. Results revealed that DC initiated earlier in simulations with higher terrain, owing both to stronger upslope flows and standing mountain waves. All simulations resulted in supercell formation, with higher terrain supercells initiating closer to the terrain peak and moving slower off the terrain. Higher terrain simulations displayed increases in both low-level and deep-layer wind shear along the eastern slopes of the terrain that were related to the enhanced upslope flows, supporting stronger and wider supercell updrafts/downdrafts and a wider swath of heavy rainfall. Deeper and stronger cold pools from these wider and stronger higher terrain supercells led to surging outflow that reduced convective available potential energy accessible to deep convective updrafts, resulting in quicker supercell demise off the terrain. Lower terrain supercells moved quickly off the terrain, merged with weaker convective cells, and resulted in a quasi-organized MCS. These results demonstrate that terrain-induced flow modification may lead to substantial local variations in convective morphology. 
    more » « less
  2. This research investigates a hypothesis posed by previous authors, which argues that the helical nature of the flow in supercell updrafts makes them more resistant to entrainment than nonsupercellular updrafts because of the suppressed turbulence in purely helical flows. It was further supposed that this entrainment resistance contributes to the steadiness and longevity of supercell updrafts. A series of idealized large-eddy simulations were run to address this idea, wherein the deep-layer shear and hodograph shape were varied, resulting in supercells in the strongly sheared runs, nonsupercells in the weakly sheared runs, and variations in the percentage of streamwise vorticity in updrafts among runs. Fourier energy spectrum analyses show well-developed inertial subranges in all simulations, which suggests that the percentages of streamwise and crosswise vorticity have little effect on turbulence in convective environments. Additional analyses find little evidence of updraft-scale centrifugally stable flow within updrafts, which has also been hypothesized to limit horizontal mass flux across supercell updrafts. Results suggest that supercells do have smaller fractional entrainment rates than nonsupercells, but these differences are consistent with theoretical dependencies of entrainment on updraft width, and with supercells being wider than nonsupercells. Thus, while supercells do experience reduced fractional entrainment rates and entrainment-driven dilution, this advantage is primarily attributable to increased supercell updraft width relative to ordinary convection, and has little to do with updraft helicity and rotation.

     
    more » « less
  3. Abstract

    Previous work found that cold pools in ordinary convection are more sensitive to the microphysics scheme when the lifting condensation level (LCL) is higher owing to a greater evaporation potential, which magnifies microphysical uncertainties. In the current study, we explore whether the same reasoning can be applied to supercellular cold pools. To do this, four perturbed-microphysics ensembles are run, with each using an environment with a different LCL. Similar to ordinary convection, the sensitivity of supercellular cold pools to the microphysics increases with higher LCLs, though the physical reasoning for this increase in sensitivity differs from a previous study. Using buoyancy budgets along parcel trajectories that terminate in the cold pool, we find that negative buoyancy generated by microphysical cooling is partially countered by a decrease in environmental potential temperatures as the parcel descends. This partial erosion of negative buoyancy as parcels descend is most pronounced in the low-LCL storms, which have steeper vertical profiles of environmental potential temperature in the lower atmosphere. When this erosion is accounted for, the strength of the strongest cold pools in the low-LCL ensemble is reduced, resulting in a narrower distribution of cold pool strengths. This narrower distribution is indicative of reduced sensitivity to the microphysics. These results suggest that supercell behavior and supercell hazards (e.g., tornadoes) may be more predictable in low-LCL environments.

    Significance Statement

    Thunderstorms typically produce “pools” of cold air beneath them owing in part to the evaporation of rain and melting of ice produced by the storm. Past work has found that in computer simulations of thunderstorms, the cold pools that form beneath thunderstorms are sensitive to how rain and ice are modeled in the simulation. In this study, we show that in the strongest thunderstorms that are capable of producing tornadoes, this sensitivity is reduced when the humidity in the lowest few kilometers above the surface is increased. Exploring why the sensitivity is reduced when the humidity increases provides a deeper understanding of the relationship between humidity and cold pool strength, which is important for severe storm forecasting.

     
    more » « less
  4. Abstract

    Ten years of airborne Doppler radar observations are used to study convective updrafts' kinematic and reflectivity structures in tropical cyclone (TC) rainbands. An automated algorithm is developed to identify the strongest rainband updrafts across 12 hurricane‐strength TCs. The selected updrafts are then collectively analyzed by their frequency, radius, azimuthal location (relative to the 200–850 hPa environmental wind shear), structural characteristics, and secondary circulation (radial/vertical) flow pattern. Rainband updrafts become deeper and stronger with increasing radius. A wavenumber‐1 asymmetry arises, showing that in the downshear (upshear) quadrants of the TC, updrafts are more (less) frequent and deeper (shallower). In the downshear quadrants, updrafts primarily have in‐up‐out or in‐up‐in secondary circulation patterns. The in‐up‐out circulation is the most frequent pattern and has the deepest updraft and reflectivity tower. Upshear, the updrafts generally have out‐up‐in or in‐up‐in patterns. The radial flow of the updraft circulations largely follows the vortex‐scale radial flow shear‐induced asymmetry, being increased low‐level inflow (outflow) and midlevel outflow (inflow) in the downshear (upshear) quadrants. It is hypothesized that the convective‐scale circulations are significantly influenced by the vortex‐scale radial flow at the updraft base and top altitudes. Other processes of the convective life cycle, such as bottom‐up decay of aging convective updrafts due to increased low‐level downdrafts, can influence the base altitude and, thus, the base radial flow of the updraft circulation. The findings presented in this study support previous literature regarding convective‐scale patterns of organized rainband convection in a mature, sheared TC.

     
    more » « less
  5. Abstract

    This article introduces a novel hypothesis for the role of vertical wind shear (“shear”) in deep convection initiation (DCI). In this hypothesis, initial moist updrafts that exceed a width and shear threshold will “root” within a progressively deeper steering current with time, increase their low-level cloud-relative flow and inflow, widen, and subsequently reduce their susceptibility to entrainment-driven dilution, evolving toward a quasi-steady self-sustaining state. In contrast, initial updrafts that do not exceed the aforementioned thresholds experience suppressed growth by shear-induced downward pressure gradient accelerations, will not root in a deep-enough steering current to increase their inflow, will narrow with time, and will succumb to entrainment-driven dilution. In the latter case, an externally driven lifting mechanism is required to sustain deep convection, and deep convection will not persist in the absence of such lifting mechanism. A theoretical model is developed from the equations of motion to further explore this hypothesis. The model indicates that shear generally suppresses DCI, raising the initial subcloud updraft width that is necessary for it to occur. However, there is a pronounced bifurcation in updraft growth in the model after the onset of convection. Sufficiently wide initial updrafts grow and eventually achieve a steady state. In contrast, insufficiently wide initial updrafts shrink with time and eventually decay completely without external support. A sharp initial updraft radius threshold discriminates between these two outcomes. Thus, consistent with our hypothesis and observations, shear inhibits DCI in some situations, but facilitates it in others.

     
    more » « less