The nature and cause of deep earthquakes remain enduring unknowns in the field of seismology. We present new models of thermal structures of subducted slabs traced to mantle transition zone depths that permit a detailed comparison between slab pressure/temperature (
- Award ID(s):
- 2025779
- NSF-PAR ID:
- 10360065
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
In the current plate tectonic regime, thermal modeling, petrology, and seismology show that subsurface portions of cold slabs carry some of their volatiles into the deep upper mantle, mantle transition zone, and uppermost lower mantle avoiding the devolatilization occurring with normal arc and wedge subduction. Slab crustal remnants at these depths can melt by intersecting their carbonated solidus whereas slab mantle remnants can devolatilize by warming and metamorphosing to ‘dryer’ mineral assemblages. Since fluid release and earthquake production (“dehydration embrittlement”) operates down to ~300 km depths in all subduction zones, we propose, that deep-focus earthquakes trace the places of fluid release at deeper levels (350 to 750 km). Fluids in faults related to earthquake generation will become diamond-forming as they react with mantle rocks along the fault walls. Diamonds thus formed will record deformation produced by mantle convection and slab buckling during mantle storage. Lithospheric diamonds, stored in static ancient continental keels, lack the connection to this type of geodynamic regime that is evident for sublithospheric diamonds. However, a comparison between the two diamond types suggests a geologic model for lithospheric diamond formation in the ancient past. Lithospheric diamonds and sublithospheric diamonds both contain evidence for the recycling of sediments or surficial rocks that have equilibrated at low temperatures with seawater. The known way to inject these materials into diamond-forming regions is slab subduction. Hence both diamond types may have formed by variants of this same process that differ in depth and style over geologic time. Lithospheric diamonds are different from sublithospheric diamonds in critical ways: higher average N content, ages extending into the Paleoarchean, inclusion assemblages indicating formation at lower pressure, and lack of ubiquitous deformation features. Nitrogen content is the key to relating lithospheric diamonds to the subducting slab. Nitrogen occurs in clays and sediments at the slab surface or uppermost crust. Regardless of whether the slab is hot or cold during subduction, nitrogen will be removed into a mantle wedge if one exists. Additionally, diamonds will not survive in the melts/fluids generated in the wedge under oxidizing conditions. For sublithospheric diamonds, their low to non-existent nitrogen content occurs because they are derived from slab fluids/melts once nitrogen has been largely removed or from rocks deeper in the slab where nitrogen is scarce. The much higher nitrogen in lithospheric diamonds suggests that they formed from fluids/melts derived near the slab surface that contained N. In the Archean, such slabs must have subducted close to the nascent mantle keel with no mantle wedge so the fluids could be directly reduced by the mantle keel. We propose a gradual temporal change from shallow, keel-adjacent, mantle-wedge-poor subduction that produced lithospheric diamonds starting in the Paleoarchean to wedge-avoiding, cold and deep subduction that produced sublithospheric diamonds in the Paleozoic. This temporal change is consistent with many geologic features: an early stagnant lid and a buoyant Archean oceanic lithosphere; the slab-imbrication, advective thickening, and diamond-richness of portions of mantle keels; and anomalously diamond-rich ancient eclogites.more » « less
-
Abstract Superdeep diamonds contain unique information from the sublithospheric regions of Earth's interior. Recent studies suggest that reaction between subducted carbonate and iron metal in the mantle plays an important role in the production of superdeep diamonds. It is unknown if this reaction is kinetically feasible in cold slabs subducted into the deep mantle. Here we present experimental data on real‐time tracking of the magnesite‐iron reaction at high pressures and high temperatures to demonstrate the production of diamond at the surface conditions of cold slabs in the transition zone and lower mantle. Our data reveal that the diamond production rate has a positive temperature dependence and a negative pressure dependence, and along a slab geotherm it decreases by a factor of three at pressures from 14.4 to 18.4 GPa. This rate reduction provides an explanation for the rarity of superdeep diamonds from the interior of the mantle transition zone.
-
Deep carbon cycle is crucial for mantle dynamics and maintaining Earth’s habitability. Recycled carbonates are a strong oxidant in mantle carbon-iron redox reactions, leading to the formation of highly oxidized mantle domains and deep carbon storage. Here we report high Fe3+/∑Fe values in Cenozoic intraplate basalts from eastern China, which are correlated with geochemical and isotopic compositions that point to a common role of carbonated melt with recycled carbonate signatures. We propose that the source of these highly oxidized basalts has been oxidized by carbonated melts derived from the stagnant subducted slab in the mantle transition zone. Diamonds formed during the carbon-iron redox reaction were separated from the melt due to density differences. This would leave a large amount of carbon (about four times of preindustrial atmospheric carbon budget) stored in the deep mantle and isolated from global carbon cycle. As such, the amounts of subducted slabs stagnated at mantle transition zone can be an important factor regulating the climate.
-
Abstract Subduction related to the ancient supercontinent cycle is poorly constrained by mantle samples. Sublithospheric diamond crystallization records the release of melts from subducting oceanic lithosphere at 300–700 km depths1,2and is especially suited to tracking the timing and effects of deep mantle processes on supercontinents. Here we show that four isotope systems (Rb–Sr, Sm–Nd, U–Pb and Re–Os) applied to Fe-sulfide and CaSiO3inclusions within 13 sublithospheric diamonds from Juína (Brazil) and Kankan (Guinea) give broadly overlapping crystallization ages from around 450 to 650 million years ago. The intracratonic location of the diamond deposits on Gondwana and the ages, initial isotopic ratios, and trace element content of the inclusions indicate formation from a peri-Gondwanan subduction system. Preservation of these Neoproterozoic–Palaeozoic sublithospheric diamonds beneath Gondwana until its Cretaceous breakup, coupled with majorite geobarometry3,4, suggests that they accreted to and were retained in the lithospheric keel for more than 300 Myr during supercontinent migration. We propose that this process of lithosphere growth—with diamonds attached to the supercontinent keel by the diapiric uprise of depleted buoyant material and pieces of slab crust—could have enhanced supercontinent stability.
-
null (Ed.)Subducting tectonic plates carry water and other surficial components into Earth’s interior. Previous studies suggest that serpentinized peridotite is a key part of deep recycling, but this geochemical pathway has not been directly traced. Here, we report Fe-Ni–rich metallic inclusions in sublithospheric diamonds from a depth of 360 to 750 km with isotopically heavy iron (δ 56 Fe = 0.79 to 0.90‰) and unradiogenic osmium ( 187 Os/ 188 Os = 0.111). These iron values lie outside the range of known mantle compositions or expected reaction products at depth. This signature represents subducted iron from magnetite and/or Fe-Ni alloys precipitated during serpentinization of oceanic peridotite, a lithology known to carry unradiogenic osmium inherited from prior convection and melt depletion. These diamond-hosted inclusions trace serpentinite subduction into the mantle transition zone. We propose that iron-rich phases from serpentinite contribute a labile heavy iron component to the heterogeneous convecting mantle eventually sampled by oceanic basalts.more » « less