Terrestrial photosynthesis is the largest and one of the most uncertain fluxes in the global carbon cycle. We find that near‐infrared reflectance of vegetation (NIRV), a remotely sensed measure of canopy structure, accurately predicts photosynthesis at FLUXNET validation sites at monthly to annual timescales (
Marine phytoplankton contributes nearly half of the total primary production on Earth through photosynthesis. Parameterizations of algal photosynthesis commonly employed in global biogeochemical simulations generally fail to capture the observed vertical structure of primary production. Here we examined the consequences of decoupling photosynthesis (carbon fixation) and biosynthesis (biomass building) with accumulation or exudation of excess photosynthate under energy rich conditions in both regional and global models. The results show that the decoupling of these two processes improved the simulated vertical profile of primary production, increased modeled primary production over 30% globally and over 40% in subtropical oceans, improved simulated meridional patterns of particulate C:N:P and increased modeled surface pool of labile/semi‐labile dissolved organic carbon. More generally, these results highlight the importance of exudation, which results from the decoupling of photosynthesis and biosynthesis, as a major physiological process affecting ocean biogeochemistry.
more » « less- NSF-PAR ID:
- 10360102
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Global Biogeochemical Cycles
- Volume:
- 35
- Issue:
- 9
- ISSN:
- 0886-6236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R 2 = 0.68), without the need for difficult to acquire information about environmental factors that constrain photosynthesis at short timescales. Scaling the relationship between gross primary production (GPP) and NIRVfrom FLUXNET eddy covariance sites, we estimate global annual terrestrial photosynthesis to be 147 Pg C/year (95% credible interval 131–163 Pg C/year), which falls between bottom‐up GPP estimates and the top‐down global constraint on GPP from oxygen isotopes. NIRV‐derived estimates of GPP are systematically higher than existing bottom‐up estimates, especially throughout the midlatitudes. Progress in improving estimated GPP from NIRVcan come from improved cloud screening in satellite data and increased resolution of vegetation characteristics, especially details about plant photosynthetic pathway. -
Abstract Well‐documented in terrestrial settings, priming effects describe stimulated heterotrophic microbial activity and decomposition of recalcitrant carbon by additions of labile carbon. In aquatic settings, algae produce labile exudates which may elicit priming during organic matter decomposition, yet the directions and mechanisms of aquatic priming effects remain poorly tested.
We tested algal‐induced priming during decomposition of two leaf species of contrasting recalcitrance,
Liriodendron tulipifera andQuercus nigra , in experimental streams under light or dark conditions. We measured litter‐associated algal, bacterial, and fungal biomass and activity, stoichiometry, and litter decomposition rates over 43 days.Light increased algal biomass and production rates, in turn increasing bacterial abundance 141%–733% and fungal production rates 20%–157%. Incubations with a photosynthesis inhibitor established that algal activity directly stimulated fungal production rates in the short term.
Algal‐stimulated fungal production rates on both leaf species were not coupled to long‐term increases in fungal biomass accrual or litter decomposition rates, which were 154%–157% and 164%–455% greater in the dark, respectively. The similar patterns on fast‐ vs. slow‐decomposing
L. tulipifera andQ. nigra , respectively, indicated that substrate recalcitrance may not mediate priming strength or direction.In this example of negative priming, periphytic algae decoupled fungal activity from decomposition, likely by providing labile carbon invested towards greater fungal growth and reproduction instead of recalcitrant carbon degradation. If common, algal‐induced negative priming could stimulate heterotrophy reliant on labile carbon yet suppress decomposition of recalcitrant carbon, modifying energy and nutrients available to upper trophic levels and enhancing organic carbon storage or export in well‐lit aquatic habitats.
plain language summary is available for this article. -
null (Ed.)It has been challenging to simultaneously improve photosynthesis and stress tolerance in plants. Crassulacean acid metabolism (CAM) is a CO2-concentrating mechanism that facilitates plant adaptation to water-limited environments. We hypothesized that the ectopic expression of a CAM-specific phosphoenolpyruvate carboxylase (PEPC), an enzyme that catalyzes primary CO2 fixation in CAM plants, would enhance both photosynthesis and abiotic stress tolerance. To test this hypothesis, we engineered a CAM-specific PEPC gene (named AaPEPC1) from Agave americana into tobacco. In comparison with wild-type and empty vector controls, transgenic tobacco plants constitutively expressing AaPEPC1 showed a higher photosynthetic rate and biomass production under normal conditions, along with significant carbon metabolism changes in malate accumulation, the carbon isotope ratio δ13C, and the expression of multiple orthologs of CAM-related genes. Furthermore, AaPEPC1 overexpression enhanced proline biosynthesis, and improved salt and drought tolerance in the transgenic plants. Under salt and drought stress conditions, the dry weight of transgenic tobacco plants overexpressing AaPEPC1 was increased by up to 81.8% and 37.2%, respectively, in comparison with wild-type plants. Our findings open a new door to the simultaneous improvement of photosynthesis and stress tolerance in plants.more » « less
-
Primary production and photoacclimation models are two important classes of physiological models that find applications in remote sensing of pools and fluxes of carbon associated with phytoplankton in the ocean. They are also key components of ecosystem models designed to study biogeochemical cycles in the ocean. So far, these two classes of models have evolved in parallel, somewhat independently of each other. Here we examine how they are coupled to each other through the intermediary of the photosynthesis–irradiance parameters. We extend the photoacclimation model to accommodate the spectral effects of light penetration in the ocean and the spectral sensitivity of the initial slope of the photosynthesis–irradiance curve, making the photoacclimation model fully compatible with spectrally resolved models of photosynthesis in the ocean. The photoacclimation model contains a parameter
, which is the maximum chlorophyll-to-carbon ratio that phytoplankton can attain when available light tends to zero. We explore how size-class-dependent values of could be inferred from field data on chlorophyll and carbon content in phytoplankton, and show that the results are generally consistent with lower bounds estimated from satellite-based primary production calculations. This was accomplished using empirical models linking phytoplankton carbon and chlorophyll concentration, and the range of values obtained in culture measurements. We study the equivalence between different classes of primary production models at the functional level, and show that the availability of a chlorophyll-to-carbon ratio facilitates the translation between these classes. We discuss the importance of the better assignment of parameters in primary production models as an important avenue to reduce model uncertainties and to improve the usefulness of satellite-based primary production calculations in climate research. -
Abstract The Gulf of Maine North Atlantic Time Series (GNATS) has been run since 1998, across the Gulf of Maine (GoM), between Maine and Nova Scotia. GNATS goals are to provide ocean color satellite validation and to examine change in this coastal ecosystem. We have sampled hydrographical, biological, chemical, biogeochemical, and bio‐optical variables. After 2008, warm water intrusions (likely North Atlantic Slope Water [NASW]) were observed in the eastern GoM at 50–180 m depths. Shallow waters (<50 m) significantly warmed in winter, summer, and fall but
cooled during spring. Surface salinity and density of the GoM also significantly increased over the 20 years. Phytoplankton standing stock and primary production showed highly‐significant decreases during the period. Concentrations of phosphate increased, silicate decreased, residual nitrate [N*; nitrate‐silicate] increased, and the ratio of dissolved inorganic nitrogen:phosphate decreased, suggesting increasing nitrogen limitation. Dissolved organic carbon (DOC) and its optical indices generally increased over two decades, suggesting changes to the DOC cycle. Surface seawater carbonate chemistry showed winter periods where the aragonite saturation (Ωar) dropped below 1.6 gulf‐wide due to upward winter mixing of cool, corrosive water. However, associated with increased average GoM temperatures, Ωarhas significantly increased. These results reinforce the hypothesis that the observed decrease in surface GoM primary production resulted from a switch from Labrador Sea Water to NASW entering the GoM. A multifactor analysis shows that decreasing GoM primary production is most significantly correlated to decreases in chlorophyll and particulate organic carbon plus increases in N* and temperature.