skip to main content


Title: The Energy Side of Budyko: Surface‐Energy Partitioning From Hydrological Observations
Abstract

Land‐surface partitioning of net radiation into sensible and latent heat fluxes is critical for hydroclimatic processes but remains highly uncertain due to limited observations. We show that a suitable extension of the Budyko's curve, a well‐known framework in hydrology for water balance estimation, can be utilized effectively to partition the surface energy fluxes by expressing the long‐term evaporative fraction (EF) as a function of the dryness index only. The combination of this energy partitioning method with hydrological observations allows us to estimate the surface energy components at watershed and continental scales. Using this new framework, we show that North American Regional Reanalysis data overestimate surface evaporation, likely influencing the modeling of atmospheric convection. The obtained hydrologic constrains on energy partitioning can be used to provide more accurate estimations of surface energy fluxes for hydroclimatic predictions.

 
more » « less
PAR ID:
10360105
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
46
Issue:
13
ISSN:
0094-8276
Page Range / eLocation ID:
p. 7456-7463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Changes in surface water and energy balance can influence weather through interactions between the land and lower atmosphere. In convecting atmospheres, increases in convective available potential energy (CAPE) at the base of the column are driven by surface turbulent fluxes and can lead to precipitation. Using two global satellite datasets, we analyze the impact of surface energy balance partitioning on convective development by tracking CAPE over soil moisture drydowns (interstorms) during the summer, when land–atmosphere coupling is strongest. Our results show that the sign and magnitude of CAPE development during summertime drydowns depends on regional hydroclimate and initial soil moisture content. On average, CAPE increases between precipitation events over humid regions (e.g., the eastern United States) and decreases slightly over arid regions (e.g., the western United States). The soil moisture content at the start of a drydown was found to only impact CAPE evolution over arid regions, leading to greater decreases in CAPE when initial soil moisture content was high. The effect of these factors on CAPE can be explained by their influence principally on surface evaporation, demonstrating the importance of evaporative controls on CAPE and providing a basis for understanding the soil moisture–precipitation relationship, as well as land–atmosphere interaction as a whole.

    Significance Statement

    Land–atmosphere coupling is a long-standing topic with growing interest within the climate and modeling communities. Understanding and characterizing the feedbacks between the land surface and lower atmosphere has important implications for weather and climate prediction. One component of land–atmosphere coupling not yet fully understood is the soil moisture–precipitation relationship. Our work quantifies the land influence on one pathway for precipitation, convection, by tracking the evolution of atmospheric convective energy as soils dry between storms. Using global satellite observations, we find clear spatial and temporal trends that link summertime convective development to soil moisture content and evaporation. Our observational results provide a benchmark for evaluating how well weather and climate models capture the complex coupling between land and atmosphere.

     
    more » « less
  2. Abstract

    Tropical ecosystems are undergoing unprecedented rates of degradation from deforestation, fire, and drought disturbances. The collective effects of these disturbances threaten to shift large portions of tropical ecosystems such as Amazon forests into savanna‐like structure via tree loss, functional changes, and the emergence of fire (savannization). Changes from forest states to a more open savanna‐like structure can affect local microclimates, surface energy fluxes, and biosphere–atmosphere interactions. A predominant type of ecosystem state change is the loss of tree cover and structural complexity in disturbed forest. Although important advances have been made contrasting energy fluxes between historically distinct old‐growth forest and savanna systems, the emergence of secondary forests and savanna‐like ecosystems necessitates a reframing to consider gradients of tree structure that span forest to savanna‐like states at multiple scales. In this Innovative Viewpoint, we draw from the literature on forest–grassland continua to develop a framework to assess the consequences of tropical forest degradation on surface energy fluxes and canopy structure. We illustrate this framework for forest sites with contrasting canopy structure that ranges from simple, open, and savanna‐like to complex and closed, representative of tropical wet forest, within two climatically distinct regions in the Amazon. Using a recently developed rapid field assessment approach, we quantify differences in cover, leaf area vertical profiles, surface roughness, albedo, and energy balance partitioning between adjacent sites and compare canopy structure with adjacent old‐growth forest; more structurally simple forests displayed lower net radiation. To address forest–atmosphere feedback, we also consider the effects of canopy structure change on susceptibility to additional future disturbance. We illustrate a converse transition—recovery in structure following disturbance—measuring forest canopy structure 10 yr after the imposition of a 5‐yr drought in the ground‐breaking Seca Floresta experiment. Our approach strategically enables rapid characterization of surface properties relevant to vegetation models following degradation, and advances links between surface properties and canopy structure variables, increasingly available from remote sensing. Concluding, we hypothesize that understanding surface energy balance and microclimate change across degraded tropical forest states not only reveals critical atmospheric forcing, but also critical local‐scale feedbacks from forest sensitivity to additional climate‐linked disturbance.

     
    more » « less
  3. Abstract

    Climate change projections show amplified warming associated with dry conditions over tropical land. We compare two perspectives explaining this amplified warming: one based on tropical atmospheric dynamics and the other focusing on soil moisture and surface fluxes. We first compare the full spatiotemporal distribution of changes in key variables in the two perspectives under a quadrupling of CO2using daily output from the CMIP6 simulations. Both perspectives center around the partitioning of the total energy/energy flux into the temperature and humidity components. We examine the contribution of this temperature/humidity partitioning in the base climate and its change under warming to rising temperatures by deriving a diagnostic linearized perturbation model that relates the magnitude of warming to 1) changes in the total energy/energy flux, 2) the base-climate temperature/humidity partitioning, and 3) changes in the partitioning under warming. We show that the spatiotemporal structure of warming in CMIP6 models is well predicted by the inverse of the base-climate partition factor, which we term the base-climate sensitivity: conditions that are drier in the base climate have a higher base-climate sensitivity and experience more warming. On top of this relationship, changes in the partition factor under intermediate (between wet and dry) surface conditions further enhance or dampen the warming. We discuss the mechanistic link between the two perspectives by illustrating the strong relationships between lower-tropospheric temperature lapse rates, a key variable for the atmospheric perspective, and surface fluxes, a key component of the land surface perspective.

    Significance Statement

    Understanding what conditions give rise to the largest magnitude of warming in response to rising CO2concentrations is not only scientifically important but also critical from a climate impact standpoint. Two main perspectives, one focusing on atmospheric dynamics and the other focusing on land surface processes, have been proposed to explain the stronger warming associated with drier conditions in the tropics. Here, we compare and contrast these two perspectives. We demonstrate that amplified warming in CMIP6 models can largely be predicted from base-climate dryness alone in both perspectives but is further modified based on changes in the partitioning of energy between temperature and moisture. We highlight the spatiotemporal conditions where assumptions in the two perspectives hold and where deviations occur within CMIP6 climate models.

     
    more » « less
  4. Abstract

    As glaciers around the world rapidly lose mass, the tight coupling between glaciers and downstream ecosystems is resulting in widespread impacts on global hydrologic and biogeochemical cycling. However, a range of challenges make it difficult to conduct research in glacierized systems, and our knowledge of seasonally changing hydrologic processes and solute sources and signatures is limited. This in turn hampers our ability to make predictions on solute composition and flux. We conducted a broad water sampling campaign in order to understand the present‐day partitioning of water sources and associated solutes in Alaska's Wolverine Glacier watershed. We established a relationship between electrical conductivity and streamflow at the watershed outlet to divide the melt season into four hydroclimatic periods. Across hydroclimatic periods, we observed a shift in nonglacial source waters from snowmelt‐dominated overland and shallow subsurface flow paths to deeper groundwater flow paths. We also observed the shift from a low‐ to high‐efficiency subglacial drainage network and the associated flushing of water stored subglacially with higher solute loads. We used calcium, the dominant dissolved ion, from watershed outlet samples to estimate solute fluxes for each hydroclimatic period across two melt seasons. We found between 40% and 55% of Ca2+export occurred during the late season rainy period. This partitioning of the melt season coupled with a characterization of the chemical makeup and magnitude of solute export provides new insight into a rapidly changing watershed and creates a framework to quantify and predict changes to solute fluxes across a melt season.

     
    more » « less
  5. Abstract Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994–2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm −2 ) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types. 
    more » « less