skip to main content


Title: Secondary Flows and Vortex Structure Associated With Isolated and Interacting Barchan Dunes

The three‐dimensional, crescentic morphology of a barchan dune induces secondary flows and a complex vortex structure in its wake. In scenarios where barchans are in close proximity to each other, the flow modifications introduced by the wake of the upstream barchan are important for understanding the morphodynamics of the downstream barchan. The results herein detail the flow structure in a plane normal to the mean flow (cross‐plane) through stereo particle image velocimetry measurements in a refractive‐index‐matching flow facility, utilizing solid, fixed‐bed barchan models. Spatial distributions of streamwise‐oriented swirling motions and Reynolds shear stress components reveal distinct flow regimes in the wake region of an isolated barchan: flow downstream of the horn tips and flow in the separated shear layer closer to the centerline. Streamwise rollers appear downstream of the horns, and measurements upstream demonstrate their origin on the stoss side of the dune in the form of a horseshoe vortex. Flow downstream of the separated shear layer in the wake embodies features consistent with that of hairpin vortices shed from the arched crestline of the barchan. These structures constitute the induction of secondary flows in the flow that, in the case of barchans in close proximity with a lateral offset, are preferentially amplified in accordance with local topography. Further analysis reveals the spatial scales and turbulent stresses associated with these structures, which are discussed in the context of larger fields of bedforms and the formation of protodunes.

 
more » « less
PAR ID:
10360170
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
125
Issue:
2
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Turbidity current and coastal storm deposits are commonly characterized by a basal sandy massive (structureless) unit overlying an erosional surface and underlying a parallel or cross‐laminated unit. Similar sequences have been recently identified in fluvial settings as well. Notwithstanding field, laboratory and numerical studies, the mechanisms for emplacement of these massive basal units are still under debate. It is well accepted that the sequence considered here can be deposited by waning‐energy flows, and that the parallel‐laminated units are deposited under transport conditions corresponding to upper plane bed at the dune–antidune transition. Thus, transport conditions that are more intense than those at the dune–antidune transition should deposit massive units. This study presents experimental, open‐channel flow results showing that sandy massive units can be the result of gradual deposition from a thick bedload layer of colliding grains called sheet flow layer. When this layer forms with relatively coarse sand, the non‐dimensional bed shear stress associated with skin friction, the Shields number, is larger than a threshold value approximately equal to 0·4. For values of the Shields number smaller than 0·4 the sheet flow layer disappeared, sediment was transported by a standard bedload layer one or two grain diameters thick, and the bed configuration was characterized by downstream migrating antidunes and washed out dunes. Parallel laminae were found in deposits emplaced with standard bedload transport demonstrating that the same dilute flow can gradually deposit the basal and the parallel‐laminated unit in presence of traction at the depositional boundary. Further, the experiments suggested that two different types of upper plane bed conditions can be defined, one associated with standard bedload transport at the dune–antidune transition, and the other associated with bedload transport in sheet flow mode at the transition between upstream and downstream migrating antidunes.

     
    more » « less
  2. Aiming to study the rough-wall turbulent boundary layer structure over differently arranged roughness elements, an experimental study was conducted on flows with regular and random roughness. Varying planform densities of truncated cone roughness elements in a square staggered pattern were investigated. The same planform densities were also investigated in random arrangements. Velocity statistics were measured via two-component laser Doppler velocimetry and stereoscopic particle image velocimetry. Friction velocity, thickness, roughness length and zero-plane displacement, determined from spatially averaged flow statistics, showed only minor differences between the regular and random arrangements at the same density. Recent a priori morphometric and statistical drag prediction methods were evaluated against experimentally determined roughness length. Observed differences between regular and random surface flow parameters were due to the presence of secondary flows which manifest as high-momentum pathways and low-momentum pathways in the streamwise velocity. Contrary to expectation, these secondary flows were present over the random surfaces and not discernible over the regular surfaces. Previously identified streamwise-coherent spanwise roughness heterogeneity does not seem to be present, suggesting that such roughness heterogeneity is not necessary to sustain secondary flows. Evidence suggests that the observed secondary flows were initiated at the front edge of the roughness and sustained over irregular roughness. Due to the secondary flows, local turbulent boundary layer profiles do not scale with local wall shear stress but appear to scale with local turbulent shear stress above the roughness canopy. Additionally, quadrant analysis shows distinct changes in the populations of ejection and sweep events. 
    more » « less
  3. The spectral and spatial behavior of the wake of a small cylinder immersed in a turbulent boundary layer at different wall-normal heights is studied and compared to a canonical turbulent boundary layer. Time-resolved particle image velocimetry measurements were taken downstream of the position where the cylinder is immersed. Measurements were also taken in of the unperturbed turbulent boundary layer in the same region without the cylinder for the same freestream velocity. The pre-multiplied energy spectra was computed for the seven cases and compared. Changes to the spectral content of the wake and of the boundary layer were observed for cases where the cylinder was nearer to the wall, while little interaction was observed for cases with the cylinder outside of the boundary layer thickness. Spectral proper orthogonal decomposition modes were calculated at wavelengths relevant to the wake vortex shedding and to the energetic turbulent structures and modifications to the modes were observed for cases with strong interaction. Vortex detection methods were used to visualize the wake and suggested that both a breakdown of periodicity of the vortex spacing and an overall spatial meandering of the wake may be responsible for the spectral modifications observed. 
    more » « less
  4. Yawing wind turbines has emerged as an appealing method for wake deflection. However, the associated flow properties, including the magnitude of the transverse velocity associated with yawed turbines, are not fully understood. In this paper, we view a yawed turbine as a lifting surface with an elliptic distribution of transverse lift. Prandtl’s lifting line theory provides predictions for the transverse velocity and magnitude of the shed counter-rotating vortex pair known to form downstream of the yawed turbine. The streamwise velocity deficit behind the turbine can then be obtained using classical momentum theory. This new model for the near-disk inviscid region of the flow is compared to numerical simulations and found to yield more accurate predictions of the initial transverse velocity and wake skewness angle than existing models. We use these predictions as initial conditions in a wake model of the downstream evolution of the turbulent wake flow and compare predicted wake deflection with measurements from wind tunnel experiments. 
    more » « less
  5. The fluid-structure interaction (FSI) of a compliant panel under a compression-ramp-induced shock/boundary-layer interaction (SBLI) has been studied in Mach 2 flow. Simultaneous high-speed measurements of the velocity field and the panel displacement were conducted using 50 kHz particle image velocimetry (PIV) and 5 kHz stereoscopic digital image correlation (DIC). The mean effect of the panel displacement has been evaluated by monitoring the change in velocity profiles along the streamwise direction (x), upstream of the separated flow region. Streamwise (u) velocity near the panel surface has been shown to change its magnitude in response to the wall shape. Furthermore, the strong cross-correlation between fluctuations of the wall-normal panel displacement and the transverse (v) velocity can be explained by the flow remaining tangent to the wall surface as the panel deforms. This latter result is consistent with the panel motion being sufficiently low frequency compared to flow convective time scales that the flow is quasi-steady In addition, assessment of the correlation between the separation shock position and panel displacement seems to suggest that when the panel is bulged down (concave up) at the downstream end of the panel, a larger separated flow is generated and the shock moves upstream. This observation remains speculative, but is consistent with the flow undergoing greater compression for the bulged down case. 
    more » « less