skip to main content


Title: The stability of aliphatic azo linkages influences the controlled scission of degradable polyurethanes
Abstract

A better understanding of polymer degradation and post‐degradation processes are essential for the development of novel degradable polymers. Herein, we present the synthesis of a new aliphatic azo‐containing polyurethane and its degradation behavior toward external stimuli like heat and UV light. A relatively stable radical forming azo‐monomer present in the current polyurethane is readily undergoing thermal degradation, whereas the azo‐group is less susceptible to optical degradation. A comparison of the stimuli‐responsive properties of the new azo‐polymer with a previously known, relatively active radical forming monomer incorporated azo‐polymer reveals the dependencies of the monomer and radical stability in the controlled degradation process. Our results point toward the importance of radical activity in azo‐containing polymers.

 
more » « less
NSF-PAR ID:
10360229
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
59
Issue:
22
ISSN:
2642-4150
Page Range / eLocation ID:
p. 2742-2753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Helical poly(isocyanide)s are an important class of synthetic polymers possessing a static helical structure. Since their initial discovery, numerous examples of these helices have been fabricated. In this contribution, the synthesis of a chiral, azobenzene (azo)‐containing isocyanide monomer is reported. Upon polymerization with nickel(II) catalysts, a well‐defined circular dichroism (CD) trace is obtained, corresponding to the formation of a right‐handed polymeric helix. The helical polymer, dissolved in chloroform and irradiated with UV light (365 nm), undergoes acistotransisomerization of the azobenzene side‐chains. After the isomerization, a change in conformation of the helix occurs, as evidenced by CD spectroscopy. When the solution is irradiated with LED light, the polymer returns to a right‐handed helical conformation. To open up the possibility for chain‐end post‐polymerization modification of this light‐responsive system, an alkyne‐functionalized nickel(II) catalyst is also used in the polymerization of the azobenzene monomer, resulting in a stimuli‐responsive, terminal‐alkyne‐containing helical poly(isocyanide).

     
    more » « less
  2. Abstract

    A hypervalent (HV) iodine(III)‐containing crosslinker, (diacryloyloxyiodo)benzene, is synthesized and its crystal structure is reported. Highly branched polymers with hypervalent iodine(III) groups as the building blocks present at the branching points are synthesized by copolymerization oftert‐butyl acrylate and the diacrylate crosslinker (up to 12 mol% vs the monovinyl monomer), under reversible deactivation radical polymerization (iodine transfer polymerization) conditions, which are employed to ensure that the incorporation of the crosslinker into the polymer chains is slow and gradual, that is, to limit the average number of pendant double bonds per chain and delay gelation. The branched polymers with (diacyloxyiodo)benzene‐type linkers are responsive and react with monocarboxylic acids, for example, acetic acid, which participate in ligand‐exchange reactions with the HV iodine(III) centers, and with reducing agents, for example, tributylphosphine, which reduce iodine(III) to iodine(I); both reactions lead to polymer degradation with the formation of random linear copolymers oftert‐butyl acrylate and acrylic acid.

     
    more » « less
  3. ABSTRACT

    While many aromatic polyurethane systems suffer from poor hydrolytic stability, more recently proposed aliphatic systems are oxidatively labile. The use of the renewable monomer glycerol as a more oxidatively resistant moiety for inclusion in shape memory polymers (SMPs) is demonstrated here. Glycerol‐containing SMPs and the amino alcohol control compositions are compared, with accelerated degradation testing displaying increased stability (time to complete mass loss) as a result of the inclusion of glycerol without sacrificing the shape memory, thermal transitions, or the ultralow density achieved with the control compositions. Gravimetric analysis in accelerated oxidative solution indicates that the control will undergo complete mass loss by approximately 18 days, while lower concentrations of glycerol will degrade fully by 30 days and higher concentrations will possess approximately 40% mass at the same time. In real‐time degradation analysis, high concentrations of glycerol SMPs have 96% mass remaining at 8 months with 88% gel fraction remaining that that time, compared to less than 50% mass for the control samples with 5% gelation. Mechanically, low glycerol‐containing SMPs were not robust enough for testing at three months, while high glycerol concentrations displayed increased elastic moduli (133% of virgin materials) and 18% decreased strain to failure. The role of the secondary alcohol, as well as isocyanates, is presented as being a crucial component in controlling degradation; a free secondary alcohol can more rapidly undergo oxidation or dehydration to ultimately yield carboxylic acids, aldehydes, carbon dioxide, and alkenes. Understanding these pathways will improve the utility of medical devices through more precise control of property loss and patient risk management through reduced degradation. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47857.

     
    more » « less
  4. Abstract

    Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron‐rich C−H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether‐based polyurethane in a green solvent. This work demonstrates a facile, electrochemically‐driven route to degrade polymers containing ether functionalities.

     
    more » « less
  5. Abstract

    Leveraging electrochemistry to degrade robust polymeric materials has the potential to impact society's growing issue of plastic waste. Herein, we develop an electrocatalytic oxidative degradation of polyethers and poly(vinyl ethers) via electrochemically mediated hydrogen atom transfer (HAT) followed by oxidative polymer degradation promoted by molecular oxygen. We investigated the selectivity and efficiency of this method, finding our conditions to be highly selective for polymers with hydridic, electron‐rich C−H bonds. We leveraged this reactivity to degrade polyethers and poly(vinyl ethers) in the presence of polymethacrylates and polyacrylates with complete selectivity. Furthermore, this method made polyacrylates degradable by incorporation of ether units into the polymer backbone. We quantified degradation products, identifying up to 36 mol % of defined oxidation products, including acetic acid, formic acid, and acetaldehyde, and we extended this method to degrade a polyether‐based polyurethane in a green solvent. This work demonstrates a facile, electrochemically‐driven route to degrade polymers containing ether functionalities.

     
    more » « less