skip to main content


Title: Recurrent Activity from Active Asteroid (248370) 2005 QN 173 : A Main-belt Comet
Abstract

We present archival observations of main-belt asteroid (248370) 2005 QN173(also designated 433P) that demonstrate this recently discovered active asteroid (a body with a dynamically asteroidal orbit displaying a tail or coma) has had at least one additional apparition of activity near perihelion during a prior orbit. We discovered evidence of this second activity epoch in an image captured 2016 July 22 with the DECam on the 4 m Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile. As of this writing, (248370) 2005 QN173is just the eighth active asteroid demonstrated to undergo recurrent activity near perihelion. Our analyses demonstrate (248370) 2005 QN173is likely a member of the active asteroid subset known as main-belt comets, a group of objects that orbit in the main asteroid belt that exhibit activity that is specifically driven by sublimation. We implement an activity detection technique,wedge photometry, that has the potential to detect tails in images of solar system objects and quantify their agreement with computed antisolar and antimotion vectors normally associated with observed tail directions. We present a catalog and an image gallery of archival observations. The object will soon become unobservable as it passes behind the Sun as seen from Earth, and when it again becomes visible (late 2022) it will be farther than 3 au from the Sun. Our findings suggest (248370) 2005 QN173is most active interior to 2.7 au (0.3 au from perihelion), so we encourage the community to observe and study this special object before 2021 December.

 
more » « less
NSF-PAR ID:
10360237
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
922
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L8
Size(s):
["Article No. L8"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the discovery of cometary activity emanating from Main-belt asteroid 410590 (2008 GB140), a finding facilitated, for the first time, by an artificial intelligence (AI) assistant. The assistant,TailNet, is a prototype we designed to enhance volunteer efforts of our Citizen Science projectActive Asteroids, a NASA Partner program hosted on theZooniverseplatform. Our follow-up investigation revealed eight Dark Energy Camera images showing 2008 GB140with a tail spanning UT 2023 April 23–UT 2023 July 3, when the object was inbound to perihelion. We classify 2008 GB140as an active asteroid and a candidate Main-belt comet (MBC)—a main-belt asteroid that undergoes volatile sublimation-driven activity. Notably, 2008 GB140is presently near perihelion, thus the object is a prime target for follow-up observations to further characterize its activity.

     
    more » « less
  2. Abstract

    (155140) 2005 UD has a similar orbit to (3200) Phaethon, an active asteroid in a highly eccentric orbit thought to be the source of the Geminid meteor shower. Evidence points to a genetic relationship between these two objects, but we have yet to fully understand how 2005 UD and Phaethon could have separated into this associated pair. Presented herein are new observations of 2005 UD from five observatories that were carried out during the 2018, 2019, and 2021 apparitions. We implemented light curve inversion using our new data, as well as dense and sparse archival data from epochs in 2005–2021, to better constrain the rotational period and derive a convex shape model of 2005 UD. We discuss two equally well-fitting pole solutions (λ= 116.°6,β= −53.°6) and (λ= 300.°3,β= −55.°4), the former largely in agreement with previous thermophysical analyses and the latter interesting due to its proximity to Phaethon’s pole orientation. We also present a refined sidereal period ofPsid= 5.234246 ± 0.000097 hr. A search for surface color heterogeneity showed no significant rotational variation. An activity search using the deepest stacked image available of 2005 UD near aphelion did not reveal a coma or tail but allowed modeling of an upper limit of 0.04–0.37 kg s−1for dust production. We then leveraged our spin solutions to help limit the range of formation scenarios and the link to Phaethon in the context of nongravitational forces and timescales associated with the physical evolution of the system.

     
    more » « less
  3. Abstract

    We report a statistically significant detection of nongravitational acceleration on the subkilometer near-Earth asteroid (523599) 2003 RM. Due to its orbit, 2003 RM experiences favorable observing apparitions every 5 yr. Thus, since its discovery, 2003 RM has been extensively tracked with ground-based optical facilities in 2003, 2008, 2013, and 2018. We find that the observed plane-of-sky positions cannot be explained with a purely gravity-driven trajectory. Including a transverse nongravitational acceleration allows us to match all observational data, but its magnitude is inconsistent with perturbations typical of asteroids such as the Yarkovsky effect or solar radiation pressure. After ruling out that the orbital deviations are due to a close approach or collision with another asteroid, we hypothesize that this anomalous acceleration is caused by unseen cometary outgassing. A detailed search for evidence of cometary activity with archival and deep observations from the Panoramic Survey Telescope and Rapid Response System and the Very Large Telescope does not reveal any detectable dust production. However, the best-fitting H2O sublimation model allows for brightening due to activity consistent with the scatter of the data. We estimate the production rate required for H2O outgassing to power the acceleration and find that, assuming a diameter of 300 m, 2003 RM would require Q(H2O) ∼ 1023molec s−1at perihelion. We investigate the recent dynamical history of 2003 RM and find that the object most likely originated in the mid-to-outer main belt (∼86% probability) as opposed to from the Jupiter-family comet region (∼11% probability). Further observations, especially in the infrared, could shed light on the nature of this anomalous acceleration.

     
    more » « less
  4. Abstract

    We report the discovery of an active asteroid, 2016 UU121, for the first time via artificial intelligence-enhanced classification, informed by our NASA Partner programActive Asteroids, a Citizen Science project hosted on theZooniverseplatform. The early version of our deep neural network,TailNet, identified potential activity associated with 2016 UU121in 40 Dark Energy Camera (DECam) images from UT 2021 September 10 to 11. The discovery was vetted and confirmed by ourActive Asteroidscore science team. In total, 66 DECam images of this object showed clear activity in the form of a tail. 2016 UU121has a Tisserand parameter with respect to Jupiter of 3.161, thus we classify the object as an active asteroid. Moreover, the activity occurred near perihelion, so 2016 UU121is also a candidate Main-belt comet.

     
    more » « less
  5. Abstract

    We have discovered evidence of cometary activity originating from (551023) 2012 UQ192(alternately designated 2019 SN40), which we dynamically classify as a Jupiter Family Comet (JFC). JFCs have eccentric Jupiter-crossing orbits and originate in the Kuiper Belt. Analysis of these objects can provide vital information about minor planets in the outer solar system, such as the distribution of volatiles within the solar system. Activity on 2012 UQ192was first recognized by volunteers on our NASA Partner Citizen Science projectActive Asteroids. Through our own examination of archival image data, we found a total of ∼30 images presenting strong evidence of activity near perihelion during two separate orbits. 2012 UQ192is notable as we found it to be recurrently active. When 2012 UQ192approaches its perihelion passage in 2027 September, we predict it will reactivate and will be a prime subject for follow-up observations.

     
    more » « less