skip to main content


Title: Ankle structure of the Tokay gecko ( Gekko gecko ) and its role in the deployment of the subdigital adhesive system
Abstract

The remarkable ability of geckos to adhere to smooth surfaces is often thought of in terms of external structures, including the branching setae that make contact with the surface producing van der Waals forces. Some geckos also exhibit unique movements of the distal segments of the limbs during locomotion and static clinging, including active digital hyperextension and considerable pedal rotation. During static clinging, geckos can exhibit considerable adduction/abduction of the pes while the crus and thigh remain firmly adpressed to the substratum. This decoupling of pedal adduction/abduction from ankle flexion/extension and pedal long‐axis rotation is a significant departure from pedal displacements of a typical lizard lacking adhesive ability. The structure of the ankle is likely key to this decoupling, although no detailed comparison of this complex joint between pad‐bearing geckos and other lizards is available. Here we compare the configuration of the mesotarsal joint of nongekkotan lizards (IguanaandPristidactylus) with that of the Tokay gecko (Gekko gecko) using prepared skeletons, scanning electron microscopy, and micro‐computed tomographic (µCT) scans. We focus on the structure of the astragalocalcaneum and the fourth distal tarsal. The mesotarsal joint exhibits a suite of modifications that are likely associated with the secondarily symmetrical pes of pad‐bearing geckos. For example, the lateral process of the astragalocalcaneum is much more extensive inG.geckocompared with other lizards. The mesotarsal joint exhibits several other differences permitting dissociation of long‐axis rotation of the pes from flexion–extension movement, including a reduced ventral peg on the fourth distal tarsal, an articulatory pattern dominated by a well‐defined, expansive distomesial notch of the astragalocalcaneum, and an associated broad proximodorsal articulatory facet of the fourth distal tarsal. Pad‐bearing geckos are capable of effectively deploying their intricate adhesive system across a broad array of body angles because of this highly modified ankle. Future research should determine whether the differences encountered inG.gecko(and their extent) apply to the Gekkota as a whole and should examine how the elements of the ankle move dynamically during locomotion across a range of taxa.

 
more » « less
NSF-PAR ID:
10360243
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Anatomy
Volume:
239
Issue:
6
ISSN:
0021-8782
Page Range / eLocation ID:
p. 1503-1515
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Extant mammals are both taxonomically and ecologically diverse, having evolved a remarkable array of locomotor ecologies (e.g., swimming, digging, and flying). Evolution of the therian-type forelimb, with a highly reduced pectoral girdle and ball-and-socket shoulder joint, has been heralded as a key innovation that enabled mammals to co-opt their forelimbs for diverse functions. The acquisition of the mammal forelimb can be traced through their forerunners, the non-mammalian synapsids (NMS), but exactly how this musculoskeletal transformation proceeded and its impact on functional diversification have not be quantitatively tested. To explore the evolution of forelimb functional diversity in synapsids, we measured shoulder joint osteological range of motion (ROM) in a range of extant amniotes (lizards, monotremes, therian mammals), and compared their patterns of joint mobility to exemplars from each of the major grades of NMS: ‘pelycosaurs’, basal therapsids, and non-mammalian cynodonts. Three-dimensional models of the shoulder girdles and humeri were digitally aligned in an anatomical ‘neutral pose’ using a semi-automated approach based on articular surface morphology. ROM was then determined for the shoulder joint using a fully automated method, where the humerus was moved in flexion-extension, adduction-abduction, and pronation-supination until bone-to-bone contact occurred. Relative degree and directionality of mobility were then compared across taxa. We find an increase in total shoulder joint ROM through synapsid evolution, suggesting that more derived NMS could perform a wider range of limb movements. However, we also see more complex trends in directionality of shoulder mobility that may be indicators of forelimb posture. Extant lepidosaurs and monotremes had the greatest ROM in abduction-adduction, whereas therians had more ROM in flexion-extension, likely related to ‘sprawling’ vs. ‘erect’ gaits. Therapsids and cynodonts both had greatest ROM in abduction-adduction, matching previous reconstructions of these taxa as sprawling to semi-erect. However, ‘pelycosaurs’ had the greatest ROM in flexion-extension, despite having abducted forelimbs, suggesting they did not move their forelimbs in same manner as modern sprawling animals. Our results demonstrate the complex nature of forelimb evolution in synapsids and provide novel insights into the functional transformation and diversification of the mammalian forelimb. Funding Sources Funding information: NSF DEB- 1757749 (S.E.P) and NSF DEB-1754502 (K.D.A). 
    more » « less
  2. Abstract

    It has been nearly 20 years since Autumn and colleagues established the central role of van der Waals intermolecular forces in how geckos stick. Much has been discovered about the structure and function of fibrillar adhesives in geckos and other taxa, and substantial success has been achieved in translating natural models into bioinspired synthetic adhesives. Nevertheless, synthetics still cannot match the multidimensional performance observed in the natural gecko system that is simultaneously robust to dirt and water, resilient over thousands of cycles, and purportedly competent on surfaces that are rough at drastically different length scales. Apparent insensitivity of adhesion to variability in roughness is particularly interesting from both a theoretical and applied perspective. Progress on understanding the extent to which and the basis of how the gecko adhesive system is robust to variation in roughness is impeded by the complexity of quantifying roughness of natural surfaces and a dearth of data on free-ranging gecko substrate use. Here we review the main challenges in characterizing rough surfaces as they relate to collecting relevant estimates of variation in gecko adhesive performance across different substrates in their natural habitats. In response to these challenges, we propose a practical protocol (borrowing from thermal biophysical ecological methods) that will enable researchers to design detailed studies of structure–function relationships of the gecko fibrillar system. Employing such an approach will help provide specific hypotheses about how adhesive pad structure translates into a capacity for robust gecko adhesion across large variation in substrate roughness. Preliminary data we present on this approach suggest its promise in advancing the study of how geckos deal with roughness variation. We argue and outline how such data can help advance development of design parameters to improve bioinspired adhesives based on the gecko fibrillar system.

     
    more » « less
  3. Abstract How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansor formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards. 
    more » « less
  4. Abstract

    Armored skin resulting from the presence of bony dermal structures, osteoderms, is an exceptional phenotype in gekkotans (geckos and flap‐footed lizards) only known to occur in three genera:Geckolepis,Gekko, andTarentola. The Tokay gecko (Gekko geckoLINNAEUS 1758) is among the best‐studied geckos due to its large size and wide range of occurrence, and although cranial dermal bone development has previously been investigated, details of osteoderm development along a size gradient remain less well‐known. Likewise, a comparative survey of additional species within the broaderGekkoclade to determine the uniqueness of this trait has not yet been completed. Here, we studied a large sample of gekkotans (38 spp.), including 18 specimens ofG. gecko, using X‐rays and high‐resolution computed tomography for visualizing and quantifying the dermal armorin situ. Results from this survey confirm the presence of osteoderms in a second species within this genus,GekkoreevesiiGRAY 1831, which exhibits discordance in timing and pattern of osteoderm development when compared with its sister taxon,G. gecko. We discuss the developmental sequence of osteoderms in these two species and explore in detail the formation and functionality of these enigmatic dermal ossifications. Finally, we conducted a comparative analysis of endolymphatic sacs in a wide array of gekkotans to explore previous ideas regarding the role of osteoderms as calcium reservoirs. We found thatG. geckoand other gecko species with osteoderms have highly enlarged endolymphatic sacs relative to their body size, when compared to species without osteoderms, which implies that these membranous structures might fulfill a major role of calcium storage even in species with osteoderms.

     
    more » « less
  5. Abstract

    Hoplodactylus delcourtiis a presumably extinct species of diplodactylid gecko known only from a single specimen of unknown provenance. It is by far the largest known gekkotan, approximately 50% longer than the next largest-known species. It has been considered a member of the New Zealand endemic genusHoplodactylusbased on external morphological features including shared toe pad structure. We obtained DNA from a bone sample of the only known specimen to generate high-throughput sequence data suitable for phylogenetic analysis of its evolutionary history. Complementary sequence data were obtained from a broad sample of diplodactylid geckos. Our results indicate that the species is not most closely related to extantHoplodactylusor any other New Zealand gecko. Instead, it is a member of a clade whose living species are endemic to New Caledonia. Phylogenetic comparative analyses indicate that the New Caledonian diplodactylid clade has evolved significantly more disparate body sizes than either the Australian or New Zealand clades. Toe pad structure has changed repeatedly across diplodactylids, including multiple times in the New Caledonia clade, partially explaining the convergence in form betweenH. delcourtiand New ZealandHoplodactylus. Based on the phylogenetic results, we placeH. delcourtiin a new genus.

     
    more » « less